MedTransCluster: Transfer learning for deep medical image clustering

Mojtaba Jahanian , Abbas Karimi , Nafiseh Osati Eraghi , Faraneh Zarafshan
{"title":"MedTransCluster: Transfer learning for deep medical image clustering","authors":"Mojtaba Jahanian ,&nbsp;Abbas Karimi ,&nbsp;Nafiseh Osati Eraghi ,&nbsp;Faraneh Zarafshan","doi":"10.1016/j.ibmed.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces the “MedTransCluster” framework, a novel approach to medical image clustering in chest radiography through the application of transfer learning, leveraging the capabilities of pre-trained deep learning models. Our evaluation encompassed a variety of neural networks, considering their adaptability to the nuances of medical imaging data. The study incorporated four renowned clustering algorithms and an expanded set of evaluation metrics, offering a comprehensive comparison and a refined analysis of these models’ ability to cluster complex diagnostic features. Notably, EfficientNetB0 coupled with DBSCAN clustering algorithm achieved a silhouette score of 0.924131, and ResNet152 with KMeans displayed a Calinski Harabasz score of 9655.213964, indicating their superior proficiency in capturing the intricacies of medical features. These results emphasize the critical importance of model refinement within the healthcare imaging sphere and underscore the potential of methodologies like MedTransCluster in enhancing diagnostic accuracy and patient outcomes.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000061/pdfft?md5=7177c2ff66f6399232cf11114c5cfa1a&pid=1-s2.0-S2666521224000061-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces the “MedTransCluster” framework, a novel approach to medical image clustering in chest radiography through the application of transfer learning, leveraging the capabilities of pre-trained deep learning models. Our evaluation encompassed a variety of neural networks, considering their adaptability to the nuances of medical imaging data. The study incorporated four renowned clustering algorithms and an expanded set of evaluation metrics, offering a comprehensive comparison and a refined analysis of these models’ ability to cluster complex diagnostic features. Notably, EfficientNetB0 coupled with DBSCAN clustering algorithm achieved a silhouette score of 0.924131, and ResNet152 with KMeans displayed a Calinski Harabasz score of 9655.213964, indicating their superior proficiency in capturing the intricacies of medical features. These results emphasize the critical importance of model refinement within the healthcare imaging sphere and underscore the potential of methodologies like MedTransCluster in enhancing diagnostic accuracy and patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MedTransCluster:深度医学图像聚类的迁移学习
这项工作介绍了 "MedTransCluster "框架,这是一种通过应用迁移学习,利用预先训练的深度学习模型的能力,对胸部放射摄影中的医学影像进行聚类的新方法。考虑到神经网络对医学影像数据细微差别的适应性,我们的评估涵盖了各种神经网络。这项研究纳入了四种知名的聚类算法和一组扩展的评估指标,对这些模型聚类复杂诊断特征的能力进行了全面的比较和精细的分析。值得注意的是,EfficientNetB0 与 DBSCAN 聚类算法的剪影得分达到了 0.924131,ResNet152 与 KMeans 的 Calinski Harabasz 得分达到了 9655.213964,这表明它们在捕捉错综复杂的医学特征方面具有卓越的能力。这些结果强调了在医疗成像领域完善模型的重要性,并突出了 MedTransCluster 等方法在提高诊断准确性和患者治疗效果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1