{"title":"A Rate-Splitting Strategy for STAR-RIS-Aided Massive MIMO Systems With Joint Optimization","authors":"Hanxiao Ge;Anastasios Papazafeiropoulos;Navneet Garg;Tharmalingam Ratnarajah","doi":"10.1109/JSYST.2024.3398249","DOIUrl":null,"url":null,"abstract":"This work proposes a rate-splitting (RS) strategy for simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided massive multiple-input multiple-output (mMIMO) systems to reduce the interference among multiple users and enhance the spectral efficiency (SE) while improving the coverage degraded by blockages. Specifically, we use the RS to design the precoder for the common part by solving the asymptotic problem. Also, unlike traditional RIS-aided systems, receivers can be positioned on either side of the RIS panel in the proposed system. We derive the sum-rate based on statistical channel state information (CSI) to reduce the signal overhead. Next, we optimize the rate through a projected gradient ascent method algorithm simultaneously with respect to the amplitudes and phase shifts of the STAR-RIS. Simulations show the advantages of the RS strategy compared with the broadcasting strategy in improving the sum-rate. We further evaluate the efficiency of the STAR-RIS system against the traditional RIS-aided system. In our analysis, we employ energy splitting and mode switching protocols to fine-tune the transmission and reflection coefficients of the outgoing and incoming signals.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"977-988"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10531718/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a rate-splitting (RS) strategy for simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided massive multiple-input multiple-output (mMIMO) systems to reduce the interference among multiple users and enhance the spectral efficiency (SE) while improving the coverage degraded by blockages. Specifically, we use the RS to design the precoder for the common part by solving the asymptotic problem. Also, unlike traditional RIS-aided systems, receivers can be positioned on either side of the RIS panel in the proposed system. We derive the sum-rate based on statistical channel state information (CSI) to reduce the signal overhead. Next, we optimize the rate through a projected gradient ascent method algorithm simultaneously with respect to the amplitudes and phase shifts of the STAR-RIS. Simulations show the advantages of the RS strategy compared with the broadcasting strategy in improving the sum-rate. We further evaluate the efficiency of the STAR-RIS system against the traditional RIS-aided system. In our analysis, we employ energy splitting and mode switching protocols to fine-tune the transmission and reflection coefficients of the outgoing and incoming signals.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.