Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Atmospheric Sciences Pub Date : 2024-05-15 DOI:10.1007/s00376-023-3196-1
Jingrui Yan, Wenjun Zhang, Suqiong Hu, Feng Jiang
{"title":"Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies","authors":"Jingrui Yan, Wenjun Zhang, Suqiong Hu, Feng Jiang","doi":"10.1007/s00376-023-3196-1","DOIUrl":null,"url":null,"abstract":"<p>Winter precipitation over eastern China displays remarkable interannual variability, which has been suggested to be closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early (November–December) and late (January–February) winter. In early winter, precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In contrast, the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution. The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies. During the early winter of El Niño years, anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China, thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution. Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters. Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-interannual predictability of winter precipitation over eastern China.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"92 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3196-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Winter precipitation over eastern China displays remarkable interannual variability, which has been suggested to be closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early (November–December) and late (January–February) winter. In early winter, precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In contrast, the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution. The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies. During the early winter of El Niño years, anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China, thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution. Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters. Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-interannual predictability of winter precipitation over eastern China.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与季节性变化的黑潮反气旋异常有关的厄尔尼诺/南方涛动对中国东部初冬和深冬降水模式的不同影响
中国东部冬季降水的年际变化显著,这被认为与厄尔尼诺-南方涛动(ENSO)密切相关。本研究发现,厄尔尼诺/南方涛动对中国东部降水模式的影响在初冬(11 月至 12 月)和晚冬(1 月至 2 月)表现出明显差异。在初冬,与厄尔尼诺/南方涛动相关的降水异常在华东地区呈单极空间分布特征。相比之下,冬末的降水异常模式发生了显著变化,表现为偶极空间分布。从初冬到深冬降水响应的显著变化主要归因于季节性变化的黑潮反气旋异常。在厄尔尼诺年的初冬,菲律宾海和黑潮地区都出现了反气旋环流异常,增强了向整个华东地区的水汽输送,从而导致当地降水增多。在厄尔尼诺年的冬末,菲律宾海上空的反气旋进一步加强,而黑潮上空的反气旋消散,这可能导致中国东部南北水汽输送的差异,从而形成偶极性降水分布。在拉尼娜冬季,环流和降水的反常现象大致相反。进一步分析表明,黑潮反气旋异常的季节性变化可能与厄尔尼诺/南方涛动相关的热带中东太平洋对流从初冬到晚冬的增强有关。这些结果对中国东部冬季降水的季节-年际可预报性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
期刊最新文献
Spatiotemporal Evaluation and Future Projection of Diurnal Temperature Range over the Tibetan Plateau in CMIP6 Models Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements Effectiveness of Precursor Emission Reductions for the Control of Summertime Ozone and PM2.5 in the Beijing–Tianjin–Hebei Region under Different Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1