Vector-Symbolic Architecture for Event-Based Optical Flow

Hongzhi You, Yijun Cao, Wei Yuan, Fanjun Wang, Ning Qiao, Yongjie Li
{"title":"Vector-Symbolic Architecture for Event-Based Optical Flow","authors":"Hongzhi You, Yijun Cao, Wei Yuan, Fanjun Wang, Ning Qiao, Yongjie Li","doi":"arxiv-2405.08300","DOIUrl":null,"url":null,"abstract":"From a perspective of feature matching, optical flow estimation for event\ncameras involves identifying event correspondences by comparing feature\nsimilarity across accompanying event frames. In this work, we introduces an\neffective and robust high-dimensional (HD) feature descriptor for event frames,\nutilizing Vector Symbolic Architectures (VSA). The topological similarity among\nneighboring variables within VSA contributes to the enhanced representation\nsimilarity of feature descriptors for flow-matching points, while its\nstructured symbolic representation capacity facilitates feature fusion from\nboth event polarities and multiple spatial scales. Based on this HD feature\ndescriptor, we propose a novel feature matching framework for event-based\noptical flow, encompassing both model-based (VSA-Flow) and self-supervised\nlearning (VSA-SM) methods. In VSA-Flow, accurate optical flow estimation\nvalidates the effectiveness of HD feature descriptors. In VSA-SM, a novel\nsimilarity maximization method based on the HD feature descriptor is proposed\nto learn optical flow in a self-supervised way from events alone, eliminating\nthe need for auxiliary grayscale images. Evaluation results demonstrate that\nour VSA-based method achieves superior accuracy in comparison to both\nmodel-based and self-supervised learning methods on the DSEC benchmark, while\nremains competitive among both methods on the MVSEC benchmark. This\ncontribution marks a significant advancement in event-based optical flow within\nthe feature matching methodology.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

From a perspective of feature matching, optical flow estimation for event cameras involves identifying event correspondences by comparing feature similarity across accompanying event frames. In this work, we introduces an effective and robust high-dimensional (HD) feature descriptor for event frames, utilizing Vector Symbolic Architectures (VSA). The topological similarity among neighboring variables within VSA contributes to the enhanced representation similarity of feature descriptors for flow-matching points, while its structured symbolic representation capacity facilitates feature fusion from both event polarities and multiple spatial scales. Based on this HD feature descriptor, we propose a novel feature matching framework for event-based optical flow, encompassing both model-based (VSA-Flow) and self-supervised learning (VSA-SM) methods. In VSA-Flow, accurate optical flow estimation validates the effectiveness of HD feature descriptors. In VSA-SM, a novel similarity maximization method based on the HD feature descriptor is proposed to learn optical flow in a self-supervised way from events alone, eliminating the need for auxiliary grayscale images. Evaluation results demonstrate that our VSA-based method achieves superior accuracy in comparison to both model-based and self-supervised learning methods on the DSEC benchmark, while remains competitive among both methods on the MVSEC benchmark. This contribution marks a significant advancement in event-based optical flow within the feature matching methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件的光流矢量符号架构
从特征匹配的角度来看,事件摄像机的光流估计包括通过比较伴随事件帧之间的特征相似性来识别事件对应关系。在这项工作中,我们利用矢量符号架构(VSA)为事件帧引入了一种有效且稳健的高维(HD)特征描述符。VSA 中相邻变量之间的拓扑相似性有助于增强流匹配点特征描述符的表征相似性,而其结构化符号表征能力则有利于从两个事件极性和多个空间尺度进行特征融合。基于这种高清特征描述符,我们提出了一种新颖的基于事件的光流特征匹配框架,包括基于模型的方法(VSA-Flow)和自我监督学习方法(VSA-SM)。在 VSA-Flow 中,精确的光流估计验证了高清特征描述符的有效性。在 VSA-SM 中,提出了一种基于高清特征描述符的新颖相似性最大化方法,以自我监督的方式仅从事件中学习光流,从而消除了对辅助灰度图像的需求。评估结果表明,在 DSEC 基准测试中,与基于模型的学习方法和自我监督学习方法相比,我们基于 VSA 的方法获得了更高的准确率,而在 MVSEC 基准测试中,我们的方法在两种方法中仍然具有竞争力。这一贡献标志着基于事件的光流特征匹配方法取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1