{"title":"Replicating outdoor environments using VR and ambisonics: a methodology for accurate audio-visual recording, processing and reproduction","authors":"Fotis Georgiou, Claudia Kawai, Beat Schäffer, Reto Pieren","doi":"10.1007/s10055-024-01003-1","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a methodology tailored to capture, post-process, and replicate audio-visual data of outdoor environments (urban or natural) for VR experiments carried out within a controlled laboratory environment. The methodology consists of 360<span>\\(^\\circ\\)</span> video and higher order ambisonic (HOA) field recordings and subsequent calibrated spatial sound reproduction with a spherical loudspeaker array and video played back via a head-mounted display using a game engine and a graphical user interface for a perceptual experimental questionnaire. Attention was given to the equalisation and calibration of the ambisonic microphone and to the design of different ambisonic decoders. A listening experiment was conducted to evaluate four different decoders (one 2D first-order ambisonic decoder and three 3D third-order decoders) by asking participants to rate the relative (perceived) realism of recorded outdoor soundscapes reproduced with these decoders. The results showed that the third-order decoders were ranked as more realistic.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"4 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-01003-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a methodology tailored to capture, post-process, and replicate audio-visual data of outdoor environments (urban or natural) for VR experiments carried out within a controlled laboratory environment. The methodology consists of 360\(^\circ\) video and higher order ambisonic (HOA) field recordings and subsequent calibrated spatial sound reproduction with a spherical loudspeaker array and video played back via a head-mounted display using a game engine and a graphical user interface for a perceptual experimental questionnaire. Attention was given to the equalisation and calibration of the ambisonic microphone and to the design of different ambisonic decoders. A listening experiment was conducted to evaluate four different decoders (one 2D first-order ambisonic decoder and three 3D third-order decoders) by asking participants to rate the relative (perceived) realism of recorded outdoor soundscapes reproduced with these decoders. The results showed that the third-order decoders were ranked as more realistic.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.