{"title":"CBA: Multi Source Fusion Model for Fast and Intelligent Target Intention Identification","authors":"Shichang Wan, Qingshan Li, Xuhua Wang, Nanhua Lu","doi":"10.23919/jsee.2024.000023","DOIUrl":null,"url":null,"abstract":"How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders' operational command and situation prediction.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders' operational command and situation prediction.