Fast Solution to the Free Return Orbit's Reachable Domain of the Manned Lunar Mission by Deep Neural Network

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-01-16 DOI:10.23919/jsee.2023.000117
Luyi Yang, Haiyang Li, Jin Zhang, Yuehe Zhu
{"title":"Fast Solution to the Free Return Orbit's Reachable Domain of the Manned Lunar Mission by Deep Neural Network","authors":"Luyi Yang, Haiyang Li, Jin Zhang, Yuehe Zhu","doi":"10.23919/jsee.2023.000117","DOIUrl":null,"url":null,"abstract":"It is important to calculate the reachable domain (RD) of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient database-generation method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit's inclination and right ascension of ascending node (RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01° on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"27 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2023.000117","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

It is important to calculate the reachable domain (RD) of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient database-generation method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit's inclination and right ascension of ascending node (RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01° on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络快速求解载人登月任务的自由返回轨道可达域
计算载人登月任务的可达域(RD)对于评估航天器能否到达月球着陆点非常重要。本文通过分类和回归神经网络对自由返回轨道的 RD 进行了快速评估和计算。本文开发了一种高效的数据库生成方法,用于获取八种类型的自由返回轨道,然后根据轨道的倾角和近月点(RAAN)的升交点右升角定义 RD。分别训练分类神经网络和回归网络。前者用于对 RD 的类型进行分类,后者用于计算 RD 的倾角和 RAAN。仿真结果表明,两个神经网络训练有素。在测试集上,分类模型的准确率超过 99%,回归模型的均方误差小于 0.01°。此外,还提出了将两个代用模型结合起来的串行策略,并构建了一个识别工具来评估是否能到达月球站点。与传统的双二体模型相比,所提出的深度学习方法在计算效率上更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1