{"title":"Strong and tough conductive silk fibroin/poly(vinyl alcohol) composite hydrogel by a salting-in and salting-out synergistic effect","authors":"Honghui Ma, Yingxue Deng, Yubo Lin, Yu Zhang, Zhengxiong Zhou, Haoan Yu, Xiancai Jiang","doi":"10.1007/s13726-024-01334-5","DOIUrl":null,"url":null,"abstract":"<div><p>Hofmeister effect has been used to prepare highly tough and conductive hydrogel. However, it usually needs the complex steps of post-treatment of a pre-formed weak hydrogel by soaking in salt solution. Herein, strong and tough silk fibroin/poly(vinyl alcohol) (SF/PVA) ionic conductive hydrogel was prepared by a simple one-pot method by direct introduction of sodium citrate (Na<sub>3</sub>Cit) into SF/PVA solution. It was found that Na<sub>3</sub>Cit could not be directly introduced into SF/PVA solution due to its salting-out effect to prepare tough hydrogel. Fortunately, the salting-out effect of Na<sub>3</sub>Cit could be weakened with the presence of calcium chloride (CaCl<sub>2</sub>) and glycerol in SF/PVA solution. Finally, the strong and tough SF/PVA hydrogel was obtained by the one-time freezing/thawing process of SF/PVA/CaCl<sub>2</sub>/Na<sub>3</sub>Cit/glycerol solution. The tough SF/PVA/CaCl<sub>2</sub>/Na<sub>3</sub>Cit/glycerol organohydrogel with the tensile strength of 0.33 MPa and elongation-at-break of 540% were obtained. The SF/PVA/CaCl<sub>2</sub>/Na<sub>3</sub>Cit/glycerol organohydrogel with the excellent mechanical properties and ionic conductivity was used as the strain sensor. The SF/PVA/CaCl<sub>2</sub>/Na<sub>3</sub>Cit/glycerol organohydrogel sensor could detect various human motions with high sensitivity (GF = 6.87). The SF/PVA/CaCl<sub>2</sub>/Na<sub>3</sub>Cit/glycerol organo hydrogel strain sensor could generate reliable and reproducible electrical signals in response to various mechanical stimuli. We intend to present a simple and effective method to prepare high performance ionic hydrogel by Hofmeister effect.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 11","pages":"1527 - 1537"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01334-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hofmeister effect has been used to prepare highly tough and conductive hydrogel. However, it usually needs the complex steps of post-treatment of a pre-formed weak hydrogel by soaking in salt solution. Herein, strong and tough silk fibroin/poly(vinyl alcohol) (SF/PVA) ionic conductive hydrogel was prepared by a simple one-pot method by direct introduction of sodium citrate (Na3Cit) into SF/PVA solution. It was found that Na3Cit could not be directly introduced into SF/PVA solution due to its salting-out effect to prepare tough hydrogel. Fortunately, the salting-out effect of Na3Cit could be weakened with the presence of calcium chloride (CaCl2) and glycerol in SF/PVA solution. Finally, the strong and tough SF/PVA hydrogel was obtained by the one-time freezing/thawing process of SF/PVA/CaCl2/Na3Cit/glycerol solution. The tough SF/PVA/CaCl2/Na3Cit/glycerol organohydrogel with the tensile strength of 0.33 MPa and elongation-at-break of 540% were obtained. The SF/PVA/CaCl2/Na3Cit/glycerol organohydrogel with the excellent mechanical properties and ionic conductivity was used as the strain sensor. The SF/PVA/CaCl2/Na3Cit/glycerol organohydrogel sensor could detect various human motions with high sensitivity (GF = 6.87). The SF/PVA/CaCl2/Na3Cit/glycerol organo hydrogel strain sensor could generate reliable and reproducible electrical signals in response to various mechanical stimuli. We intend to present a simple and effective method to prepare high performance ionic hydrogel by Hofmeister effect.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.