Gayathri G L, Krithika Swaminathan, Divyasri Krishnakumar, Thenmozhi D, Bharathi B
{"title":"Abusive Comment Detection in Tamil Code-Mixed Data by Adjusting Class Weights and Refining Features","authors":"Gayathri G L, Krithika Swaminathan, Divyasri Krishnakumar, Thenmozhi D, Bharathi B","doi":"10.1145/3664619","DOIUrl":null,"url":null,"abstract":"<p>In recent years, a significant portion of the content on various platforms on the internet has been found to be offensive or abusive. Abusive comment detection can go a long way in preventing internet users from facing the adverse effects of coming in contact with abusive language. This problem is particularly challenging when the comments are found in low-resource languages like Tamil or Tamil-English code-mixed text. So far, there has not been any substantial work on abusive comment detection using imbalanced datasets. Furthermore, significant work has not been performed, especially for Tamil code-mixed data, that involves analysing the dataset for classification and accordingly creating a custom vocabulary for preprocessing. This paper proposes a novel approach to classify abusive comments from an imbalanced dataset using a customised training vocabulary and a combination of statistical feature selection with language-agnostic feature selection while making use of explainable AI for feature refinement. Our model achieved an accuracy of 74% and a macro F1-score of 0.46.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664619","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, a significant portion of the content on various platforms on the internet has been found to be offensive or abusive. Abusive comment detection can go a long way in preventing internet users from facing the adverse effects of coming in contact with abusive language. This problem is particularly challenging when the comments are found in low-resource languages like Tamil or Tamil-English code-mixed text. So far, there has not been any substantial work on abusive comment detection using imbalanced datasets. Furthermore, significant work has not been performed, especially for Tamil code-mixed data, that involves analysing the dataset for classification and accordingly creating a custom vocabulary for preprocessing. This paper proposes a novel approach to classify abusive comments from an imbalanced dataset using a customised training vocabulary and a combination of statistical feature selection with language-agnostic feature selection while making use of explainable AI for feature refinement. Our model achieved an accuracy of 74% and a macro F1-score of 0.46.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.