Generative hyperelasticity with physics-informed probabilistic diffusion fields

IF 8.7 2区 工程技术 Q1 Mathematics Engineering with Computers Pub Date : 2024-05-18 DOI:10.1007/s00366-024-01984-2
Vahidullah Taç, Manuel K. Rausch, Ilias Bilionis, Francisco Sahli Costabal, Adrian Buganza Tepole
{"title":"Generative hyperelasticity with physics-informed probabilistic diffusion fields","authors":"Vahidullah Taç, Manuel K. Rausch, Ilias Bilionis, Francisco Sahli Costabal, Adrian Buganza Tepole","doi":"10.1007/s00366-024-01984-2","DOIUrl":null,"url":null,"abstract":"<p>Many natural materials exhibit highly complex, nonlinear, anisotropic, and heterogeneous mechanical properties. Recently, it has been demonstrated that data-driven strain energy functions possess the flexibility to capture the behavior of these complex materials with high accuracy while satisfying physics-based constraints. However, most of these approaches disregard the uncertainty in the estimates and the spatial heterogeneity of these materials. In this work, we leverage recent advances in generative models to address these issues. We use as building block neural ordinary equations (NODE) that—by construction—create polyconvex strain energy functions, a key property of realistic hyperelastic material models. We combine this approach with probabilistic diffusion models to generate new samples of strain energy functions. This technique allows us to sample a vector of Gaussian white noise and translate it to NODE parameters thereby representing plausible strain energy functions. We extend our approach to spatially correlated diffusion resulting in heterogeneous material properties for arbitrary geometries. We extensively test our method with synthetic and experimental data on biological tissues and run finite element simulations with various degrees of spatial heterogeneity. We believe this approach is a major step forward including uncertainty in predictive, data-driven models of hyperelasticity.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01984-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Many natural materials exhibit highly complex, nonlinear, anisotropic, and heterogeneous mechanical properties. Recently, it has been demonstrated that data-driven strain energy functions possess the flexibility to capture the behavior of these complex materials with high accuracy while satisfying physics-based constraints. However, most of these approaches disregard the uncertainty in the estimates and the spatial heterogeneity of these materials. In this work, we leverage recent advances in generative models to address these issues. We use as building block neural ordinary equations (NODE) that—by construction—create polyconvex strain energy functions, a key property of realistic hyperelastic material models. We combine this approach with probabilistic diffusion models to generate new samples of strain energy functions. This technique allows us to sample a vector of Gaussian white noise and translate it to NODE parameters thereby representing plausible strain energy functions. We extend our approach to spatially correlated diffusion resulting in heterogeneous material properties for arbitrary geometries. We extensively test our method with synthetic and experimental data on biological tissues and run finite element simulations with various degrees of spatial heterogeneity. We believe this approach is a major step forward including uncertainty in predictive, data-driven models of hyperelasticity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物理信息概率扩散场生成超弹性
许多天然材料表现出高度复杂、非线性、各向异性和异质的机械特性。最近的研究表明,数据驱动的应变能函数具有很高的灵活性,可以高精度地捕捉这些复杂材料的行为,同时满足基于物理学的约束条件。然而,这些方法大多忽略了估计值的不确定性和这些材料的空间异质性。在这项工作中,我们利用生成模型的最新进展来解决这些问题。我们使用神经普通方程(NODE)作为构建模块,通过构造创建多凸应变能函数,这是现实超弹性材料模型的一个关键属性。我们将这种方法与概率扩散模型相结合,生成新的应变能函数样本。这种技术允许我们对高斯白噪声矢量进行采样,并将其转换为 NODE 参数,从而代表可信的应变能函数。我们将方法扩展到空间相关扩散,从而产生任意几何形状的异质材料特性。我们用生物组织的合成数据和实验数据对我们的方法进行了广泛测试,并对不同程度的空间异质性进行了有限元模拟。我们相信,这种方法是将不确定性纳入超弹性预测模型和数据驱动模型的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
期刊最新文献
A universal material model subroutine for soft matter systems A second-generation URANS model (STRUCT- $$\epsilon $$ ) applied to a generic side mirror and its impact on sound generation Multiphysics discovery with moving boundaries using Ensemble SINDy and peridynamic differential operator Adaptive Kriging-based method with learning function allocation scheme and hybrid convergence criterion for efficient structural reliability analysis A new kernel-based approach for solving general fractional (integro)-differential-algebraic equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1