Observation of spectral lines in the exceptional GRB 221009A

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-05-11 DOI:10.1007/s11433-023-2381-0
Yan-Qiu Zhang, Shao-Lin Xiong, Ji-Rong Mao, Shuang-Nan Zhang, Wang-Chen Xue, Chao Zheng, Jia-Cong Liu, Zhen Zhang, Xi-Lu Wang, Ming-Yu Ge, Shu-Xu Yi, Li-Ming Song, Zheng-Hua An, Ce Cai, Xin-Qiao Li, Wen-Xi Peng, Wen-Jun Tan, Chen-Wei Wang, Xiang-Yang Wen, Yue Wang, Shuo Xiao, Fan Zhang, Peng Zhang, Shi-Jie Zheng
{"title":"Observation of spectral lines in the exceptional GRB 221009A","authors":"Yan-Qiu Zhang, Shao-Lin Xiong, Ji-Rong Mao, Shuang-Nan Zhang, Wang-Chen Xue, Chao Zheng, Jia-Cong Liu, Zhen Zhang, Xi-Lu Wang, Ming-Yu Ge, Shu-Xu Yi, Li-Ming Song, Zheng-Hua An, Ce Cai, Xin-Qiao Li, Wen-Xi Peng, Wen-Jun Tan, Chen-Wei Wang, Xiang-Yang Wen, Yue Wang, Shuo Xiao, Fan Zhang, Peng Zhang, Shi-Jie Zheng","doi":"10.1007/s11433-023-2381-0","DOIUrl":null,"url":null,"abstract":"<p>As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and <i>Fermi</i>/GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ <i>t</i><sup>−1</sup>) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.</p>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11433-023-2381-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi/GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ t−1) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
观测异常 GRB 221009A 中的光谱线
作为迄今观测到的最亮伽马射线暴,GRB 221009A 为我们提供了一个探索光谱线特征的宝贵机会。在这篇文章中,我们利用 GECAM-C 和 Fermi/GBM 数据对 GRB 221009A 进行了全面的光谱分析,以寻找发射和吸收线。我们首次研究了整个GRB的发射线特征,包括许多仪器都出现问题的最亮部分,并在多个时间间隔内发现了突出的发射线。高斯发射线的中心能量从大约 37 MeV 演变到 6 MeV,线宽和中心能量之间的比率几乎恒定(大约 10%)。特别是,我们发现发射线的中心能量和能量通量都随着时间的推移呈幂律衰减,幂律指数分别为-1和-2。我们认为,观测到的发射线很可能源自蓝移电子正负电子对湮没的 511 keV 线。我们发现,标准的高纬度发射情景并不能完全解释观测结果,因此我们提出,发射线来自于一些与喷流一起移动的电子正负电子对的致密团块。在这种情况下,我们可以利用发射线首次直接测量喷流的体洛伦兹因子(Γ),并揭示其在迅速发射过程中的时间演变(即Γ ∼ t-1)。有趣的是,我们发现湮灭线的通量在共动帧中保持不变。这些光谱线特征的发现为研究GRB和相对论射流物理提供了新的重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Embedded Majorana islands Lorentz violation induces isospectrality breaking in Einstein-bumblebee gravity theory Frustrated superconductivity and sextetting order Physical neural networks with self-learning capabilities Anomalous negative magnetoresistance in quantum dot Josephson junctions with Kondo correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1