{"title":"Remote State Estimation Under DoS Attacks in CPSs With Arbitrary Tree Topology: A Bayesian Stackelberg Game Approach","authors":"Yuhan Wang;Wei Xing;Junfeng Zhang;Le Liu;Xudong Zhao","doi":"10.1109/TSIPN.2024.3394776","DOIUrl":null,"url":null,"abstract":"In this paper, we consider remote state estimation for an arbitrary tree topology in cyber-physical systems (CPSs) subject to Denial-of-Service (DoS) attacks. A sensor transmits its local estimation to the root node of the tree, and the root node transmits the optimal estimation to its child nodes until the leaf nodes are reached. In the meanwhile, a malicious attacker can jam all communication channels strategically connected to the attacked node. With the energy constraints in mind, both the defender and attacker adopt strategies that involve allocating energy to determine which nodes to protect or attack at each time step. A Bayesian Stackelberg game (BSG) framework with incomplete information is implemented, where the defender has no access to the available energy of the attacker exactly except for its probability distribution. In addition, a Markov decision process (MDP) and a Stackelberg Q-learning algorithm are presented to obtain the Stackelberg equilibrium (SE) policy over a finite time horizon. Finally, a numerical example is provided to demonstrate our main results.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"527-538"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10533844/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider remote state estimation for an arbitrary tree topology in cyber-physical systems (CPSs) subject to Denial-of-Service (DoS) attacks. A sensor transmits its local estimation to the root node of the tree, and the root node transmits the optimal estimation to its child nodes until the leaf nodes are reached. In the meanwhile, a malicious attacker can jam all communication channels strategically connected to the attacked node. With the energy constraints in mind, both the defender and attacker adopt strategies that involve allocating energy to determine which nodes to protect or attack at each time step. A Bayesian Stackelberg game (BSG) framework with incomplete information is implemented, where the defender has no access to the available energy of the attacker exactly except for its probability distribution. In addition, a Markov decision process (MDP) and a Stackelberg Q-learning algorithm are presented to obtain the Stackelberg equilibrium (SE) policy over a finite time horizon. Finally, a numerical example is provided to demonstrate our main results.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.