Positive steady states of a class of power law systems with independent decompositions

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Mathematical Chemistry Pub Date : 2024-05-14 DOI:10.1007/s10910-024-01622-8
Al Jay Lan J. Alamin, Bryan S. Hernandez
{"title":"Positive steady states of a class of power law systems with independent decompositions","authors":"Al Jay Lan J. Alamin, Bryan S. Hernandez","doi":"10.1007/s10910-024-01622-8","DOIUrl":null,"url":null,"abstract":"<p>Power law systems have been studied extensively due to their wide-ranging applications, particularly in chemistry. In this work, we focus on power law systems that can be decomposed into stoichiometrically independent subsystems. We show that for such systems where the ranks of the augmented matrices containing the kinetic order vectors of the underlying subnetworks sum up to the rank of the augmented matrix containing the kinetic order vectors of the entire network, then the existence of the positive steady states of each stoichiometrically independent subsystem is a necessary and sufficient condition for the existence of the positive steady states of the given power law system. We demonstrate the result through illustrative examples. One of which is a network of a carbon cycle model that satisfies the assumptions, while the other network fails to meet the assumptions. Finally, using the aforementioned result, we present a systematic method for deriving positive steady state parametrizations for the mentioned subclass of power law systems, which is a generalization of our recent method for mass action systems.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10910-024-01622-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Power law systems have been studied extensively due to their wide-ranging applications, particularly in chemistry. In this work, we focus on power law systems that can be decomposed into stoichiometrically independent subsystems. We show that for such systems where the ranks of the augmented matrices containing the kinetic order vectors of the underlying subnetworks sum up to the rank of the augmented matrix containing the kinetic order vectors of the entire network, then the existence of the positive steady states of each stoichiometrically independent subsystem is a necessary and sufficient condition for the existence of the positive steady states of the given power law system. We demonstrate the result through illustrative examples. One of which is a network of a carbon cycle model that satisfies the assumptions, while the other network fails to meet the assumptions. Finally, using the aforementioned result, we present a systematic method for deriving positive steady state parametrizations for the mentioned subclass of power law systems, which is a generalization of our recent method for mass action systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有独立分解的幂律系统的正稳态
由于幂律系统的广泛应用,尤其是在化学领域的应用,人们对它进行了广泛的研究。在这项研究中,我们重点研究了可分解为独立于化学计量学的子系统的幂律系统。我们的研究表明,对于这类系统,如果包含底层子网络动能阶次向量的增强矩阵的阶次总和等于包含整个网络动能阶次向量的增强矩阵的阶次,那么每个化学计量学独立子系统正稳态的存在就是给定幂律系统正稳态存在的必要条件和充分条件。我们通过示例来证明这一结果。其中一个碳循环模型网络满足假设条件,而另一个网络则不满足假设条件。最后,利用上述结果,我们提出了一种为上述幂律系统子类推导正稳态参数的系统方法,它是我们最近对质量作用系统方法的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
期刊最新文献
Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects A first-rate fourteenth-order phase-fitting approach to solving chemical problems On the uniqueness of continuous and discrete hard models of NMR-spectra Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions Thermodynamical quantities of silver mono halides from spectroscopic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1