Sophie Michel, Frederic Messine, Jean-René Poirier
{"title":"Topological optimization in 3D-magnetostatics: development of adjoint methods using the equations of magnetic moments","authors":"Sophie Michel, Frederic Messine, Jean-René Poirier","doi":"10.1108/compel-10-2023-0533","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is mainly to develop the adjoint method within the method of magnetic moment (MMM) and thus, to provide an efficient new way to solve topology optimization problems in magnetostatic to design 3D-magnetic circuits.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>First, the MMM is recalled and the optimization design problem is reformulated as a partial derivative equation-constrained optimization problem where the constraint is the Maxwell equation in magnetostatic. From the Karush–Khun–Tucker optimality conditions, a new problem is derived which depends on a Lagrangian parameter. This problem is called the adjoint problem and the Lagrangian parameter is called the adjoint parameter. Thus, solving the direct and the adjoint problems, the values of the objective function as well as its gradient can be efficiently obtained. To obtain a topology optimization code, a semi isotropic material with penalization (SIMP) relaxed-penalization approach associated with an optimization based on gradient descent steps has been developed and used.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>In this paper, the authors provide theoretical results which make it possible to compute the gradient via the continuous adjoint of the MMMs. A code was developed and it was validated by comparing it with a finite difference method. Thus, a topology optimization code associating this adjoint based gradient computations and SIMP penalization technique was developed and its efficiency was shown by solving a 3D design problem in magnetostatic.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>This research is limited to the design of systems in magnetostatic using the linearity of the materials. The simple examples, the authors provided, are just done to validate our theoretical results and some extensions of our topology optimization code have to be done to solve more interesting design cases.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The problem of design is a 3D magnetic circuit. The 2D optimization problems are well known and several methods of resolution have been introduced, but rare are the problems using the adjoint method in 3D. Moreover, the association with the MMMs has never been treated yet. The authors show in this paper that this association could provide gains in CPU time.</p><!--/ Abstract__block -->","PeriodicalId":501376,"journal":{"name":"COMPEL","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-10-2023-0533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is mainly to develop the adjoint method within the method of magnetic moment (MMM) and thus, to provide an efficient new way to solve topology optimization problems in magnetostatic to design 3D-magnetic circuits.
Design/methodology/approach
First, the MMM is recalled and the optimization design problem is reformulated as a partial derivative equation-constrained optimization problem where the constraint is the Maxwell equation in magnetostatic. From the Karush–Khun–Tucker optimality conditions, a new problem is derived which depends on a Lagrangian parameter. This problem is called the adjoint problem and the Lagrangian parameter is called the adjoint parameter. Thus, solving the direct and the adjoint problems, the values of the objective function as well as its gradient can be efficiently obtained. To obtain a topology optimization code, a semi isotropic material with penalization (SIMP) relaxed-penalization approach associated with an optimization based on gradient descent steps has been developed and used.
Findings
In this paper, the authors provide theoretical results which make it possible to compute the gradient via the continuous adjoint of the MMMs. A code was developed and it was validated by comparing it with a finite difference method. Thus, a topology optimization code associating this adjoint based gradient computations and SIMP penalization technique was developed and its efficiency was shown by solving a 3D design problem in magnetostatic.
Research limitations/implications
This research is limited to the design of systems in magnetostatic using the linearity of the materials. The simple examples, the authors provided, are just done to validate our theoretical results and some extensions of our topology optimization code have to be done to solve more interesting design cases.
Originality/value
The problem of design is a 3D magnetic circuit. The 2D optimization problems are well known and several methods of resolution have been introduced, but rare are the problems using the adjoint method in 3D. Moreover, the association with the MMMs has never been treated yet. The authors show in this paper that this association could provide gains in CPU time.