{"title":"SOC Estimation of Li-Ion Power Battery Based on Strong Tracking UKF with Multiple Suboptimal Fading Factors","authors":"Zhengjun Huang, Tengfei Xiang, Yu Chen, Ludan Shi","doi":"10.1007/s12239-024-00093-9","DOIUrl":null,"url":null,"abstract":"<p>A method based on strong tracking unscented Kalman filter with multiple suboptimal fading factors (MSTUKF) was proposed to accurately estimate the state of charge (SOC) of power batteries of electric vehicles online. Taking a certain lithium-ion battery as the research object, a second-order RC equivalent circuit model of the battery was established based on its external characteristics and related mechanism. Then the recursive least squares method with forgetting factor was adopted to identify the model parameters, and the MSTUKF nonlinear state space equation of the battery was established according to the equivalent circuit model. Finally, the SOC estimation algorithm was verified by simulation experiments under ECE15 and UDDS conditions. The results show that the error of MSTUKF in SOC estimation of lithium-ion battery is kept within 1.5%, so this method can estimate battery SOC accurately.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00093-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A method based on strong tracking unscented Kalman filter with multiple suboptimal fading factors (MSTUKF) was proposed to accurately estimate the state of charge (SOC) of power batteries of electric vehicles online. Taking a certain lithium-ion battery as the research object, a second-order RC equivalent circuit model of the battery was established based on its external characteristics and related mechanism. Then the recursive least squares method with forgetting factor was adopted to identify the model parameters, and the MSTUKF nonlinear state space equation of the battery was established according to the equivalent circuit model. Finally, the SOC estimation algorithm was verified by simulation experiments under ECE15 and UDDS conditions. The results show that the error of MSTUKF in SOC estimation of lithium-ion battery is kept within 1.5%, so this method can estimate battery SOC accurately.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.