Distributionally Robust Observable Strategic Queues

Q1 Mathematics Stochastic Systems Pub Date : 2024-05-16 DOI:10.1287/stsy.2022.0009
Yijie Wang, Madhushini Narayana Prasad, Grani A. Hanasusanto, John J. Hasenbein
{"title":"Distributionally Robust Observable Strategic Queues","authors":"Yijie Wang, Madhushini Narayana Prasad, Grani A. Hanasusanto, John J. Hasenbein","doi":"10.1287/stsy.2022.0009","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of Naor’s analysis on the join-or-balk problem in observable M/M/1 queues. Although all other Markovian assumptions still hold, we explore this problem assuming uncertain arrival rates under the distributionally robust settings. We first study the problem with the classical moment ambiguity set, where the support, mean, and mean-absolute deviation of the underlying distribution are known. Next, we extend the model to the data-driven setting, where decision makers only have access to a finite set of samples. We develop three optimal joining threshold strategies from the perspectives of an individual customer, a social optimizer, and a revenue maximizer such that their respective worst-case expected benefit rates are maximized. Finally, we compare our findings with Naor’s original results and the traditional sample average approximation scheme.Funding: This research was supported by the National Science Foundation [Grants 2342505 and 2343869].","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2022.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an extension of Naor’s analysis on the join-or-balk problem in observable M/M/1 queues. Although all other Markovian assumptions still hold, we explore this problem assuming uncertain arrival rates under the distributionally robust settings. We first study the problem with the classical moment ambiguity set, where the support, mean, and mean-absolute deviation of the underlying distribution are known. Next, we extend the model to the data-driven setting, where decision makers only have access to a finite set of samples. We develop three optimal joining threshold strategies from the perspectives of an individual customer, a social optimizer, and a revenue maximizer such that their respective worst-case expected benefit rates are maximized. Finally, we compare our findings with Naor’s original results and the traditional sample average approximation scheme.Funding: This research was supported by the National Science Foundation [Grants 2342505 and 2343869].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布稳健的可观测战略队列
本文扩展了 Naor 对可观测 M/M/1 队列中加入或逡巡问题的分析。尽管所有其他马尔可夫假设仍然成立,但我们探讨了在分布稳健设置下假设不确定到达率的问题。我们首先研究了经典矩模糊集问题,在这种情况下,底层分布的支持度、平均值和平均绝对偏差都是已知的。接下来,我们将模型扩展到数据驱动设置,即决策者只能获得有限的样本集。我们从个人客户、社会最优化者和收益最大化者的角度出发,制定了三种最优加入阈值策略,从而使各自的最坏情况预期收益率最大化。最后,我们将研究结果与纳奥尔的原始结果和传统的样本平均近似方案进行了比较:本研究得到了美国国家科学基金会 [2342505 和 2343869] 的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
期刊最新文献
Sharp Waiting-Time Bounds for Multiserver Jobs Asymptotic Optimality of Switched Control Policies in a Simple Parallel Server System Under an Extended Heavy Traffic Condition Distributionally Robust Observable Strategic Queues The BAR Approach for Multiclass Queueing Networks with SBP Service Policies Ergodic Control of Bipartite Matching Queues with Class Change and Matching Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1