Evaluation of seismicity and seismotectonics in the Alborz Mountains: insights from seismic parameters, Northern Iran

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Seismology Pub Date : 2024-05-17 DOI:10.1007/s10950-024-10218-3
Marjan Tourani, Veysel Isik, Reza Saber, Ayse Caglayan, Florina Chitea
{"title":"Evaluation of seismicity and seismotectonics in the Alborz Mountains: insights from seismic parameters, Northern Iran","authors":"Marjan Tourani,&nbsp;Veysel Isik,&nbsp;Reza Saber,&nbsp;Ayse Caglayan,&nbsp;Florina Chitea","doi":"10.1007/s10950-024-10218-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Alborz Mountains are among the areas exhibiting high tectonic and seismic activity in northern Iran. Studying key parameters of tectonic structures, including quantitative analysis and observational studies, in such active regions is essential to identify potential active faults and assess the consequent seismic hazards. This study focuses on seismicity and seismotectonics by analyzing seismic parameters, including <i>b</i>-value, mean seismic activity rate, earthquake recurrence time, seismic moment, and fractal dimension derived from micro and teleseismic data. The <i>b</i>-values vary between 0.6 and 1.1 in the tectonically active parts of the study area, corresponding with the reverse/thrust and strike-slip active faults. Large earthquakes might be prone to occur at 10–25 km depth because both catalogues show low <i>b</i>-values (<i>b</i> &lt; 1.0) concentrations at this depth range. The high fractal dimension (&gt; 1.5), high seismic activity rate, large seismic moment parameters, and its continuously increasing trend. Short recurrence periods (20–50 years) of <i>M</i> 6.5 events also emphasize the high seismic activity and high seismic hazard. On the other hand, the prevalence of low <i>b</i>-values is notably observed in areas encompassing densely populated cities such as Rasht, Lahijan, Amol, Babol, Sari, Behshahr, Gorgan, and the megacity of Tehran. Furthermore, we have identified asperities where the Gorgan Plain, the Khazar, and the Alamutrud Fault Zones are located. These findings emphasize the seismic hazard potential in the identified areas and urban centers within the study area. Therefore, particular attention should be directed towards areas exhibiting low <i>b</i>-values when assessing and mitigating seismic hazards. It underscores the necessity for additional focus on seismic hazard assessment and implementation of mitigation strategies in the Alborz region.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"28 3","pages":"675 - 706"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10218-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Alborz Mountains are among the areas exhibiting high tectonic and seismic activity in northern Iran. Studying key parameters of tectonic structures, including quantitative analysis and observational studies, in such active regions is essential to identify potential active faults and assess the consequent seismic hazards. This study focuses on seismicity and seismotectonics by analyzing seismic parameters, including b-value, mean seismic activity rate, earthquake recurrence time, seismic moment, and fractal dimension derived from micro and teleseismic data. The b-values vary between 0.6 and 1.1 in the tectonically active parts of the study area, corresponding with the reverse/thrust and strike-slip active faults. Large earthquakes might be prone to occur at 10–25 km depth because both catalogues show low b-values (b < 1.0) concentrations at this depth range. The high fractal dimension (> 1.5), high seismic activity rate, large seismic moment parameters, and its continuously increasing trend. Short recurrence periods (20–50 years) of M 6.5 events also emphasize the high seismic activity and high seismic hazard. On the other hand, the prevalence of low b-values is notably observed in areas encompassing densely populated cities such as Rasht, Lahijan, Amol, Babol, Sari, Behshahr, Gorgan, and the megacity of Tehran. Furthermore, we have identified asperities where the Gorgan Plain, the Khazar, and the Alamutrud Fault Zones are located. These findings emphasize the seismic hazard potential in the identified areas and urban centers within the study area. Therefore, particular attention should be directed towards areas exhibiting low b-values when assessing and mitigating seismic hazards. It underscores the necessity for additional focus on seismic hazard assessment and implementation of mitigation strategies in the Alborz region.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对伊朗北部阿尔伯兹山脉地震活动性和地震构造的评估:从地震参数中获得的启示
阿尔伯兹山脉是伊朗北部构造和地震活动频繁的地区之一。在此类活跃地区研究构造结构的关键参数,包括定量分析和观测研究,对于识别潜在的活跃断层和评估由此产生的地震危害至关重要。本研究通过分析地震参数,包括从微震和远震数据中得出的 b 值、平均地震活动率、地震重现时间、地震力矩和分形维度,重点研究地震活动性和地震构造。在研究区构造活跃的地区,b 值介于 0.6 和 1.1 之间,与反向/推力断层和走向滑动活跃断层相对应。大地震可能容易发生在 10-25 千米深处,因为两个目录都显示低 b 值(b < 1.0)集中在这一深度范围。分形维度高(> 1.5),地震活动率高,地震力矩参数大,且呈持续上升趋势。M 6.5 级地震的重现期短(20-50 年),这也凸显了地震的高活跃性和高地震危害性。另一方面,在拉什特、拉希詹、阿莫尔、巴博尔、萨里、贝赫沙尔、戈尔甘和德黑兰特大城市等人口稠密的城市地区,b 值较低的现象十分明显。此外,我们还确定了戈尔甘平原、哈扎尔断裂带和阿拉穆特鲁德断裂带所处的地段。这些发现强调了研究区域内已确定地区和城市中心的地震危险潜力。因此,在评估和减轻地震危害时,应特别关注 b 值较低的地区。这突出表明,有必要进一步关注阿尔伯兹地区的地震灾害评估和减灾战略的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
期刊最新文献
Source parameters of the May 28, 2016, Mihoub earthquake (Mw 5.4, Algeria) deduced from Bayesian modelling of Sentinel-1 SAR data Fault imaging using earthquake sequences: a revised seismotectonic model for the Albstadt Shear Zone, Southwest Germany A logic-tree based probabilistic seismic hazard assessment for the central ionian islands of cephalonia and ithaca (Western Greece) Developing machine learning-based ground motion models to predict peak ground velocity in Turkiye Fault structures of the Haichenghe fault zone in Liaoning, China from high-precision location based on dense array observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1