{"title":"Progress on the non-canonical mismatch repair in Mycobacterium and its role in antibiotic resistance.","authors":"Sha-Sha Xiang, Jian-Ping Xie","doi":"10.16288/j.yczz.23-236","DOIUrl":null,"url":null,"abstract":"<p><p>Mismatch repair (MMR) is a common repair system after DNA replication, which is critical for maintaining genomic stability. Members of the MutS and MutL protein families are involved in key steps of mismatch repair. Despite the major importance of this repair pathway, MutS-MutL are absent in almost all Actinobacteria and many Archaea. Mycobacteria and others have another non-canonical MMR pathway, in which EndoMS/NucS plays a key role and has no structural homology compared to canonical MMR proteins (MutS/MutL). EndoMS/NucS mediated non-canonical mismatch repair plays an important role in DNA repair, mutation, homologous recombination and antibiotic resistance of Mycobacterium. By comparing the classical and non-canonical MMR pathways, this paper reviews the EndoMS/NucS-mediated non-canonical MMR pathway in Mycobacterium and its recent progress. We hope to bring new insights into the molecular mechanism of mycobacterial mismatch repair as well as to provide new research clues for mycobacterial antibiotic therapy.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"45 11","pages":"1018-1027"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Mismatch repair (MMR) is a common repair system after DNA replication, which is critical for maintaining genomic stability. Members of the MutS and MutL protein families are involved in key steps of mismatch repair. Despite the major importance of this repair pathway, MutS-MutL are absent in almost all Actinobacteria and many Archaea. Mycobacteria and others have another non-canonical MMR pathway, in which EndoMS/NucS plays a key role and has no structural homology compared to canonical MMR proteins (MutS/MutL). EndoMS/NucS mediated non-canonical mismatch repair plays an important role in DNA repair, mutation, homologous recombination and antibiotic resistance of Mycobacterium. By comparing the classical and non-canonical MMR pathways, this paper reviews the EndoMS/NucS-mediated non-canonical MMR pathway in Mycobacterium and its recent progress. We hope to bring new insights into the molecular mechanism of mycobacterial mismatch repair as well as to provide new research clues for mycobacterial antibiotic therapy.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.