Covariate adjustment and estimation of difference in proportions in randomized clinical trials.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-05-19 DOI:10.1002/pst.2397
Jialuo Liu, Dong Xi
{"title":"Covariate adjustment and estimation of difference in proportions in randomized clinical trials.","authors":"Jialuo Liu, Dong Xi","doi":"10.1002/pst.2397","DOIUrl":null,"url":null,"abstract":"<p><p>Difference in proportions is frequently used to measure treatment effect for binary outcomes in randomized clinical trials. The estimation of difference in proportions can be assisted by adjusting for prognostic baseline covariates to enhance precision and bolster statistical power. Standardization or g-computation is a widely used method for covariate adjustment in estimating unconditional difference in proportions, because of its robustness to model misspecification. Various inference methods have been proposed to quantify the uncertainty and confidence intervals based on large-sample theories. However, their performances under small sample sizes and model misspecification have not been comprehensively evaluated. We propose an alternative approach to estimate the unconditional variance of the standardization estimator based on the robust sandwich estimator to further enhance the finite sample performance. Extensive simulations are provided to demonstrate the performances of the proposed method, spanning a wide range of sample sizes, randomization ratios, and model specification. We apply the proposed method in a real data example to illustrate the practical utility.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2397","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Difference in proportions is frequently used to measure treatment effect for binary outcomes in randomized clinical trials. The estimation of difference in proportions can be assisted by adjusting for prognostic baseline covariates to enhance precision and bolster statistical power. Standardization or g-computation is a widely used method for covariate adjustment in estimating unconditional difference in proportions, because of its robustness to model misspecification. Various inference methods have been proposed to quantify the uncertainty and confidence intervals based on large-sample theories. However, their performances under small sample sizes and model misspecification have not been comprehensively evaluated. We propose an alternative approach to estimate the unconditional variance of the standardization estimator based on the robust sandwich estimator to further enhance the finite sample performance. Extensive simulations are provided to demonstrate the performances of the proposed method, spanning a wide range of sample sizes, randomization ratios, and model specification. We apply the proposed method in a real data example to illustrate the practical utility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机临床试验中的协变量调整和比例差异估算。
比例差常用于衡量随机临床试验中二元结局的治疗效果。对预后基线协变量进行调整可提高差异比例估计的精确度并增强统计能力。标准化或 g 计算是估计无条件差异比例时广泛使用的一种协变量调整方法,因为它对模型错误规范具有稳健性。基于大样本理论,人们提出了各种推断方法来量化不确定性和置信区间。然而,这些方法在小样本量和模型误设情况下的表现尚未得到全面评估。我们提出了一种基于稳健三明治估计器估计标准化估计器无条件方差的替代方法,以进一步提高有限样本性能。我们提供了大量模拟,以证明所提方法在样本大小、随机化比率和模型规范等广泛范围内的性能。我们在一个真实数据示例中应用了所提出的方法,以说明其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. Subgroup Identification Based on Quantitative Objectives. A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1