{"title":"TNF-alpha promotes cilia elongation via mixed lineage kinases signaling in mouse fibroblasts and human RPE-1 cells","authors":"Amrita Kumari, Amada D. Caliz, Hyung-Jin Yoo, Shashi Kant, Anastassiia Vertii","doi":"10.1002/cm.21873","DOIUrl":null,"url":null,"abstract":"<p>The primary cilium is a characteristic feature of most non-immune cells and functions as an environmental signal transduction sensor. The defects in primary cilium have profound effects on the developmental program, including the maturation of retinal epithelium. The ciliary length is tightly regulated during ciliogenesis, but the impact of inflammation on ciliary length remains elusive. The current study investigates the outcome of inflammatory stimuli for the primary cilium length in retinal epithelium cells and mouse embryonic fibroblasts. Here, we report that exposure to the pro-inflammatory cytokine TNF-alpha elongates cilia in a mixed-lineage kinase (MLK)-dependent manner. Pro-inflammatory stimuli such as bacterial LPS and interferon-gamma have similar effects on ciliary length. In contrast, febrile condition-mimicking heat stress dramatically reduced the number of ciliated cells regardless of TNF-alpha exposure but did not shorten TNF-induced elongation, suggesting distinct but rapid effects of inflammatory stresses on ciliogenesis.</p>","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"81 11","pages":"639-647"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cm.21873","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary cilium is a characteristic feature of most non-immune cells and functions as an environmental signal transduction sensor. The defects in primary cilium have profound effects on the developmental program, including the maturation of retinal epithelium. The ciliary length is tightly regulated during ciliogenesis, but the impact of inflammation on ciliary length remains elusive. The current study investigates the outcome of inflammatory stimuli for the primary cilium length in retinal epithelium cells and mouse embryonic fibroblasts. Here, we report that exposure to the pro-inflammatory cytokine TNF-alpha elongates cilia in a mixed-lineage kinase (MLK)-dependent manner. Pro-inflammatory stimuli such as bacterial LPS and interferon-gamma have similar effects on ciliary length. In contrast, febrile condition-mimicking heat stress dramatically reduced the number of ciliated cells regardless of TNF-alpha exposure but did not shorten TNF-induced elongation, suggesting distinct but rapid effects of inflammatory stresses on ciliogenesis.
期刊介绍:
Cytoskeleton focuses on all aspects of cytoskeletal research in healthy and diseased states, spanning genetic and cell biological observations, biochemical, biophysical and structural studies, mathematical modeling and theory. This includes, but is certainly not limited to, classic polymer systems of eukaryotic cells and their structural sites of attachment on membranes and organelles, as well as the bacterial cytoskeleton, the nucleoskeleton, and uncoventional polymer systems with structural/organizational roles. Cytoskeleton is published in 12 issues annually, and special issues will be dedicated to especially-active or newly-emerging areas of cytoskeletal research.