Applied mathematical modelling to analyze terrain-roadway-vehicle interaction of flexible-rigid foldable roadway

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2024-05-18 DOI:10.1016/j.jterra.2024.100976
Fengxiao Liu , Hao Wu , Hualin Fan , Wang Li
{"title":"Applied mathematical modelling to analyze terrain-roadway-vehicle interaction of flexible-rigid foldable roadway","authors":"Fengxiao Liu ,&nbsp;Hao Wu ,&nbsp;Hualin Fan ,&nbsp;Wang Li","doi":"10.1016/j.jterra.2024.100976","DOIUrl":null,"url":null,"abstract":"<div><p>Based on decoupled technique and superposition principle, an applied mathematical modelling method was developed to analyze soil-roadway-vehicle interaction and roadway sinkage for a rapidly deployable foldable roadway. A tensionless soil-structure model was applied to model the interaction between the soil and the roadway. The roadway is flexible longitudinally and rigid transversely. The three-dimensional (3D) plate-like problem was decoupled by two two-dimensional (2D) structural models, a longitudinal membrane-like structural model and a transverse elastic beam model. The total sinkage of the roadway is the superposition of the calculations of these two structural models. The mathematical modelling is consistent with the experimental result and its rationality has been verified.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"115 ","pages":"Article 100976"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000181","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on decoupled technique and superposition principle, an applied mathematical modelling method was developed to analyze soil-roadway-vehicle interaction and roadway sinkage for a rapidly deployable foldable roadway. A tensionless soil-structure model was applied to model the interaction between the soil and the roadway. The roadway is flexible longitudinally and rigid transversely. The three-dimensional (3D) plate-like problem was decoupled by two two-dimensional (2D) structural models, a longitudinal membrane-like structural model and a transverse elastic beam model. The total sinkage of the roadway is the superposition of the calculations of these two structural models. The mathematical modelling is consistent with the experimental result and its rationality has been verified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用数学模型分析柔性-刚性可折叠路面的地形-路面-车辆相互作用
基于解耦技术和叠加原理,开发了一种应用数学建模方法,用于分析可快速部署的折叠式路面的土壤-路面-车辆相互作用和路面下沉。无张力土壤-结构模型用于模拟土壤与路面之间的相互作用。路面纵向是柔性的,横向是刚性的。三维(3D)板状问题由两个二维(2D)结构模型(纵向膜状结构模型和横向弹性梁模型)解耦。巷道的总下沉量是这两个结构模型计算结果的叠加。数学模型与实验结果一致,其合理性已得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Optimization of subsoiler design using similitude-based DEM simulation and soil bin testing on cohesive-frictional artificial soil Editorial: Soil modeling and simulation for terramechanics applications of manned and unmanned autonomous vehicles A Riemann-based SPH formulation for modelling elastoplastic soil behaviour using a Drucker–Prager model Acoustic winter terrain classification for offroad autonomous vehicles Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1