SEPALLATA-driven MADS transcription factor tetramerization is required for inner whorl floral organ development.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2024-09-03 DOI:10.1093/plcell/koae151
Veronique Hugouvieux, Romain Blanc-Mathieu, Aline Janeau, Michel Paul, Jeremy Lucas, Xiaocai Xu, Hailong Ye, Xuelei Lai, Sarah Le Hir, Audrey Guillotin, Antonin Galien, Wenhao Yan, Max Nanao, Kerstin Kaufmann, François Parcy, Chloe Zubieta
{"title":"SEPALLATA-driven MADS transcription factor tetramerization is required for inner whorl floral organ development.","authors":"Veronique Hugouvieux, Romain Blanc-Mathieu, Aline Janeau, Michel Paul, Jeremy Lucas, Xiaocai Xu, Hailong Ye, Xuelei Lai, Sarah Le Hir, Audrey Guillotin, Antonin Galien, Wenhao Yan, Max Nanao, Kerstin Kaufmann, François Parcy, Chloe Zubieta","doi":"10.1093/plcell/koae151","DOIUrl":null,"url":null,"abstract":"<p><p>MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae151","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内轮花器的发育需要 SEPALLATA 驱动的 MADS 转录因子四聚体。
MADS 转录因子是植物繁殖和花发育的主调节因子。MADS 转录因子 SEPALLATA(SEP)亚家族是花器官发育所必需的,并在花序结构和花分生组织发育中发挥作用。SEPALLATAs 是 MADS 复合物的组织者,在体外可形成异二聚体和异四聚体。迄今为止,在被子植物花器官发育过程中发现的 MADS 复合物至少包含一个 SEPALLATA 蛋白。然而,含SEPALLATA的二聚体MADS复合体的DNA结合是否足以启动花器官特征程序尚不清楚,因为在四聚体化受损的SEPALLATA突变体蛋白中仅观察到花分生组织决定性的缺陷。在这里,我们结合使用了全基因组结合研究、SEP3/AGAMOUS(AG)四聚合结构域的高分辨率结构研究、基于结构的诱变以及拟南芥(Arabidopsis thaliana)sep1 sep2 sep3和sep1 sep2 sep3 ag-4植株与编码四聚合突变体的SEP3版本的互补实验。我们证明,虽然 SEP3 异源二聚体能在体外和体内与 DNA 结合,并能在全基因组范围内识别大多数 SEP3 野生型结合位点,但四聚体化不仅是花分生组织决定性所必需的,也是第二、第三和第四轮花器官特征所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module. Jasmonate induces translation of the Arabidopsis tRNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling. REGULATOR OF FATTY ACID SYNTHESIS proteins regulate de novo fatty acid synthesis by modulating hetACCase distribution. ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1