Challenges and advances in measuring phenotypic convergence.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Evolution Pub Date : 2024-07-29 DOI:10.1093/evolut/qpae081
David M Grossnickle, William H Brightly, Lucas N Weaver, Kathryn E Stanchak, Rachel A Roston, Spencer K Pevsner, C Tristan Stayton, P David Polly, Chris J Law
{"title":"Challenges and advances in measuring phenotypic convergence.","authors":"David M Grossnickle, William H Brightly, Lucas N Weaver, Kathryn E Stanchak, Rachel A Roston, Spencer K Pevsner, C Tristan Stayton, P David Polly, Chris J Law","doi":"10.1093/evolut/qpae081","DOIUrl":null,"url":null,"abstract":"<p><p>Tests of phenotypic convergence can provide evidence of adaptive evolution, and the popularity of such studies has grown in recent years due to the development of novel, quantitative methods for identifying and measuring convergence. These methods include the commonly applied C1-C4 measures of Stayton (2015a), which measure morphological distances between lineages, and Ornstein-Uhlenbeck (OU) model-fitting analyses, which test whether lineages converged on shared adaptive peaks. We test the performance of C-measures and other convergence measures under various evolutionary scenarios and reveal a critical issue with C-measures: they often misidentify divergent lineages as convergent. We address this issue by developing novel convergence measures-Ct1-Ct4-measures-that calculate distances between lineages at specific points in time, minimizing the possibility of misidentifying divergent taxa as convergent. Ct-measures are most appropriate when focal lineages are of the same or similar geologic ages (e.g., extant taxa), meaning that the lineages' evolutionary histories include considerable overlap in time. Beyond C-measures, we find that all convergence measures are influenced by the position of focal taxa in phenotypic space, with morphological outliers often statistically more likely to be measured as strongly convergent. Further, we mimic scenarios in which researchers assess convergence using OU models with a priori regime assignments (e.g., classifying taxa by ecological traits) and find that multiple-regime OU models with phenotypically divergent lineages assigned to a shared selective regime often outperform simpler models. This highlights that model support for these multiple-regime OU models should not be assumed to always reflect convergence among focal lineages of a shared regime. Our new Ct1-Ct4-measures provide researchers with an improved comparative tool, but we emphasize that all available convergence measures are imperfect, and researchers should recognize the limitations of these methods and use multiple lines of evidence to test convergence hypotheses.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae081","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tests of phenotypic convergence can provide evidence of adaptive evolution, and the popularity of such studies has grown in recent years due to the development of novel, quantitative methods for identifying and measuring convergence. These methods include the commonly applied C1-C4 measures of Stayton (2015a), which measure morphological distances between lineages, and Ornstein-Uhlenbeck (OU) model-fitting analyses, which test whether lineages converged on shared adaptive peaks. We test the performance of C-measures and other convergence measures under various evolutionary scenarios and reveal a critical issue with C-measures: they often misidentify divergent lineages as convergent. We address this issue by developing novel convergence measures-Ct1-Ct4-measures-that calculate distances between lineages at specific points in time, minimizing the possibility of misidentifying divergent taxa as convergent. Ct-measures are most appropriate when focal lineages are of the same or similar geologic ages (e.g., extant taxa), meaning that the lineages' evolutionary histories include considerable overlap in time. Beyond C-measures, we find that all convergence measures are influenced by the position of focal taxa in phenotypic space, with morphological outliers often statistically more likely to be measured as strongly convergent. Further, we mimic scenarios in which researchers assess convergence using OU models with a priori regime assignments (e.g., classifying taxa by ecological traits) and find that multiple-regime OU models with phenotypically divergent lineages assigned to a shared selective regime often outperform simpler models. This highlights that model support for these multiple-regime OU models should not be assumed to always reflect convergence among focal lineages of a shared regime. Our new Ct1-Ct4-measures provide researchers with an improved comparative tool, but we emphasize that all available convergence measures are imperfect, and researchers should recognize the limitations of these methods and use multiple lines of evidence to test convergence hypotheses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量表型趋同的挑战与进展
表型趋同测试可以提供适应性进化的证据,近年来,由于识别和测量趋同的新型定量方法的发展,此类研究越来越受欢迎。这些方法包括Stayton(2015年)常用的C1-C4测量方法(用于测量世系之间的形态距离)和Ornstein-Uhlenbeck(OU)模型拟合分析方法(用于测试世系是否趋同于共同的适应性峰值)。我们测试了 C-度量和其他收敛度量在各种进化情景下的表现,并揭示了 C-度量的一个关键问题:它们经常把分歧的世系误认为是收敛的。为了解决这个问题,我们开发了新的收敛度量--Ct1-Ct4--度量,计算特定时间点上各系之间的距离,最大程度地减少了将分歧类群误认为收敛类群的可能性。当焦点类群的地质年代相同或相似时(如现生类群),即类群的进化史在时间上有相当大的重叠时,Ct-度量法最为合适。除了 C-度量外,我们还发现所有的趋同度量都会受到焦点类群在表型空间中位置的影响,形态学上的异常值往往更有可能被测量为强烈趋同。此外,我们还模拟了研究人员使用先验系统分配(如按生态性状对类群进行分类)的 OU 模型来评估趋同性的情景,结果发现,表型不同的品系被分配到一个共同的选择系统的多系统 OU 模型往往优于简单的模型。这突出表明,不应假定这些多区系 OU 模型的模型支持总是反映了共享区系的焦点种系之间的趋同。我们新的 Ct1-Ct4 测量方法为研究人员提供了一个更好的比较工具,但我们强调,所有可用的趋同测量方法都是不完善的,研究人员应该认识到这些方法的局限性,并使用多种证据来检验趋同假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
期刊最新文献
Asymmetrical hybridization and environmental factors influence the spatial genetic structure of a killifish hybrid zone. Shared environmental similarity between relatives influences heritability of reproductive timing in wild great tits. Correction to: Plasticity cannot fully compensate evolutionary differences in heat tolerance across fish species. Beyond Peto's Paradox: Expanding the Study of Cancer Resistance Across Species. Digest: Extremes of the mating system continuum are the most evolutionarily stable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1