{"title":"Does long-term drought or repeated defoliation affect seasonal leaf N cycling in young beech trees?","authors":"Catherine Massonnet, Pierre-Antoine Chuste, Bernhard Zeller, Pascal Tillard, Bastien Gerard, Loucif Cheraft, Nathalie Breda, Pascale Maillard","doi":"10.1093/treephys/tpae054","DOIUrl":null,"url":null,"abstract":"<p><p>Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae054","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.