首页 > 最新文献

Tree physiology最新文献

英文 中文
Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance. 生理学和转录组分析揭示了 PsAMT1.2 在耐盐性中的分子机制。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-04 DOI: 10.1093/treephys/tpae113
Shuaijun Zhuang, Zhaoyou Yu, Jiayuan Li, Fan Wang, Chunxia Zhang

None declared.Conflict of interestSoil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological, and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type (WT) under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with WT under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase, ascorbate peroxidase activities and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity, and anion transport. Among the 1056 differentially expressed genes, genes related to photosystemIand photosystemIIwere up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.

无声明。利益冲突土壤盐碱化已成为一个全球性问题,土壤中的高浓度盐分会对植物生长产生负面影响。在之前的研究中,我们发现过表达杨树的 PsAMT1.2 能提高杨树的耐盐性,但其生理和分子机制并不清楚。为了探索PsAMT1.2在耐盐性中的调控途径,我们研究了PsAMT1.2过表达转基因杨树与野生型(WT)在盐胁迫下的形态、生理和转录组差异。与WT相比,PsAMT1.2过表达转基因杨树在盐胁迫下生长更好,净光合速率增加,叶绿素含量更高。PsAMT1.2 的过表达提高了过氧化氢酶、超氧化物歧化酶、过氧化物酶、抗坏血酸过氧化物酶的活性,因此可能增强了活性氧的清除能力,也降低了盐胁迫下膜脂质过氧化的程度。同时,PsAMT1.2过表达转基因杨树在盐胁迫下保持了相对较高的K+/Na+比值。RNA-seq分析表明,PsAMT1.2可能通过调节与光合系统、叶绿体结构、抗氧化活性和阴离子转运相关的途径来提高植物的耐盐性。在1056个差异表达基因中,与光合系统I和光合系统II相关的基因被上调,与氯通道蛋白相关的基因被下调。本研究的结果将为PsAMT1.2在提高杨树耐盐性方面的调控机制提供新的见解。
{"title":"Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance.","authors":"Shuaijun Zhuang, Zhaoyou Yu, Jiayuan Li, Fan Wang, Chunxia Zhang","doi":"10.1093/treephys/tpae113","DOIUrl":"https://doi.org/10.1093/treephys/tpae113","url":null,"abstract":"<p><p>None declared.Conflict of interestSoil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological, and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type (WT) under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with WT under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase, ascorbate peroxidase activities and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity, and anion transport. Among the 1056 differentially expressed genes, genes related to photosystemIand photosystemIIwere up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking physiological drought resistance traits to growth and mortality of three northeastern tree species. 将三种东北树种的生理抗旱特性与生长和死亡联系起来。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-09-03 DOI: 10.1093/treephys/tpae095
Alexandra M Barry, Bean Bein, Yong-Jiang Zhang, Jay W Wason

Climate change is raising concerns about how forests will respond to extreme droughts, heat waves and their co-occurrence. In this greenhouse study, we tested how carbon and water relations relate to seedling growth and mortality of northeastern US trees during and after extreme drought, warming, and combined drought and warming. We compared the response of our focal species red spruce (Picea rubens Sarg.) with a common associate (paper birch, Betula papyrifera Marsh.) and a species expected to increase abundance in this region with climate change (northern red oak, Quercus rubra L.). We tracked growth and mortality, photosynthesis and water use of 216 seedlings of these species through a treatment and a recovery year. Each red spruce seedling was planted in containers either alone or with another seedling to simulate potential competition, and the seedlings were exposed to combinations of drought (irrigated, 15-d 'short' or 30-d 'long') and temperature (ambient or 16 days at +3.5 °C daily maximum) treatments. We found dominant effects of the drought reducing photosynthesis, midday water potential, and growth of spruce and birch, but that oak showed considerable resistance to drought stress. The effects of planting seedlings together were moderate and likely due to competition for limited water. Despite high temperatures reducing photosynthesis for all species, the warming imposed in this study minorly impacted growth only for oak in the recovery year. Overall, we found that the diverse water-use strategies employed by the species in our study related to their growth and recovery following drought stress. This study provides physiological evidence to support the prediction that native species to this region like red spruce and paper birch are susceptible to future climate extremes that may favor other species like northern red oak, leading to potential impacts on tree community dynamics under climate change.

气候变化引起了人们对森林如何应对极端干旱、热浪及其共同发生的问题的关注。在这项温室研究中,我们测试了美国东北部树木在极端干旱、气候变暖以及干旱和气候变暖共同作用期间和之后的碳和水关系与幼苗生长和死亡率的关系。我们比较了重点物种红云杉(Picea rubens Sarg.我们对这些物种的 216 株幼苗在处理年和恢复年的生长和死亡率、光合作用和用水情况进行了跟踪。每棵红云杉幼苗都被单独或与另一棵幼苗一起种植在容器中,以模拟潜在的竞争,幼苗暴露在干旱(灌溉、15 天 "短 "或 30 天 "长")和温度(环境或 16 天 +3.5 °C 日最高温度)处理组合中。我们发现,干旱会显著降低云杉和桦树的光合作用、正午水势和生长,但橡树对干旱胁迫表现出相当大的抵抗力。将幼苗种植在一起的影响不大,可能是由于对有限水分的竞争。尽管高温降低了所有物种的光合作用,但本研究中施加的升温仅对橡树在恢复年份的生长产生了轻微影响。总之,我们发现本研究中的物种所采用的不同用水策略与其在干旱胁迫后的生长和恢复有关。这项研究提供了生理学证据来支持这样的预测,即红云杉和纸桦等该地区的原生物种很容易受到未来极端气候的影响,而极端气候可能会有利于北方红栎等其他物种,从而对气候变化下的树木群落动态产生潜在影响。
{"title":"Linking physiological drought resistance traits to growth and mortality of three northeastern tree species.","authors":"Alexandra M Barry, Bean Bein, Yong-Jiang Zhang, Jay W Wason","doi":"10.1093/treephys/tpae095","DOIUrl":"10.1093/treephys/tpae095","url":null,"abstract":"<p><p>Climate change is raising concerns about how forests will respond to extreme droughts, heat waves and their co-occurrence. In this greenhouse study, we tested how carbon and water relations relate to seedling growth and mortality of northeastern US trees during and after extreme drought, warming, and combined drought and warming. We compared the response of our focal species red spruce (Picea rubens Sarg.) with a common associate (paper birch, Betula papyrifera Marsh.) and a species expected to increase abundance in this region with climate change (northern red oak, Quercus rubra L.). We tracked growth and mortality, photosynthesis and water use of 216 seedlings of these species through a treatment and a recovery year. Each red spruce seedling was planted in containers either alone or with another seedling to simulate potential competition, and the seedlings were exposed to combinations of drought (irrigated, 15-d 'short' or 30-d 'long') and temperature (ambient or 16 days at +3.5 °C daily maximum) treatments. We found dominant effects of the drought reducing photosynthesis, midday water potential, and growth of spruce and birch, but that oak showed considerable resistance to drought stress. The effects of planting seedlings together were moderate and likely due to competition for limited water. Despite high temperatures reducing photosynthesis for all species, the warming imposed in this study minorly impacted growth only for oak in the recovery year. Overall, we found that the diverse water-use strategies employed by the species in our study related to their growth and recovery following drought stress. This study provides physiological evidence to support the prediction that native species to this region like red spruce and paper birch are susceptible to future climate extremes that may favor other species like northern red oak, leading to potential impacts on tree community dynamics under climate change.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying indicators of apple bud dormancy status by exposure to artificial forcing conditions. 通过人工强迫条件识别苹果花蕾休眠状态指标。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-31 DOI: 10.1093/treephys/tpae112
Anton Milyaev, Ute Born, Elke Sprich, Michael Hagemann, Henryk Flachowsky, Eike Luedeling

Dormancy in temperate fruit trees is a mechanism of temporary growth suspension, which is vital for tree survival during winter. Studies on this phenomenon frequently employ scientific methods that aim to detect the timing of dormancy release. Dormancy release occurs when trees have been exposed to sufficient chill, allowing them to resume growth under conducive conditions. This study investigates dormancy dynamics in two apple (Malus × domestica Borkh.) cultivars, 'Nicoter' and 'Topaz', by sampling branches in an orchard over 14 weeks (2019-2020) and over 31 weeks (2021-2022) and subjecting them to a 42-day budbreak forcing period in a growth chamber. Temporal changes in budbreak percentages demonstrated dormancy progression in the studied apple cultivars and allowed distinguishing the three main dormancy phases: paradormancy (summer dormancy), endodormancy (deep dormancy), and ecodormancy (spring dormancy), along with transition periods between them. Using these data, we explored the suitability of several alternative methods to determine endodormancy release. Tabuenca's test, which predicts dormancy release based on the differences in dry weights of buds with and without forcing, showed promise for this purpose. However, our data indicated a need for considerable adjustments and validation of this test. Bud weight and water content of buds in the orchard did not align with budbreak percentages under forcing conditions, rendering them unsuitable for determining endodormancy release in 'Nicoter' and 'Topaz'. Shoot growth cessation did not seem to be connected with either dormancy progression or dormancy depth of the studied cultivars, whereas leaf fall coincided with the beginning of the transition from endo- to ecodormancy. This work addresses methodological limitations in dormancy research and suggests considering the mean time to budbreak and budbreak synchrony as additional criteria to assess tree dormancy status.

温带果树的休眠是一种暂时停止生长的机制,对果树在冬季的生存至关重要。对这一现象的研究经常采用科学方法来检测休眠解除的时间。当果树受到足够的寒冷时,休眠就会解除,使其在有利条件下恢复生长。本研究调查了两个苹果(Malus × domestica Borkh.)栽培品种 "Nicoter "和 "Topaz "的休眠动态,方法是在果园中分别取样 14 周(2019-2020 年)和 31 周(2021-2022 年),并在生长室中对其进行为期 42 天的萌芽强迫。萌芽率的时间变化表明了所研究的苹果栽培品种的休眠进程,并区分了三个主要休眠期:paradormancy(夏季休眠)、endodormancy(深度休眠)和ecodormancy(春季休眠),以及它们之间的过渡期。利用这些数据,我们探索了几种确定休眠期释放的替代方法的适用性。塔布恩卡(Tabuenca)试验根据有无胁迫芽干重的差异来预测休眠期的解除,显示了该方法的前景。然而,我们的数据表明,需要对该试验进行大量调整和验证。果园中芽的重量和含水量与强制条件下的萌发率不一致,因此不适合用于确定'Nicoter'和'Topaz'的内蛰释放。嫩枝生长停止似乎与所研究栽培品种的休眠进展或休眠深度无关,而落叶则与内休眠向生态休眠过渡的开始相吻合。这项研究解决了休眠研究方法上的局限性,建议将平均萌芽时间和萌芽同步性作为评估树木休眠状态的额外标准。
{"title":"Identifying indicators of apple bud dormancy status by exposure to artificial forcing conditions.","authors":"Anton Milyaev, Ute Born, Elke Sprich, Michael Hagemann, Henryk Flachowsky, Eike Luedeling","doi":"10.1093/treephys/tpae112","DOIUrl":"https://doi.org/10.1093/treephys/tpae112","url":null,"abstract":"<p><p>Dormancy in temperate fruit trees is a mechanism of temporary growth suspension, which is vital for tree survival during winter. Studies on this phenomenon frequently employ scientific methods that aim to detect the timing of dormancy release. Dormancy release occurs when trees have been exposed to sufficient chill, allowing them to resume growth under conducive conditions. This study investigates dormancy dynamics in two apple (Malus × domestica Borkh.) cultivars, 'Nicoter' and 'Topaz', by sampling branches in an orchard over 14 weeks (2019-2020) and over 31 weeks (2021-2022) and subjecting them to a 42-day budbreak forcing period in a growth chamber. Temporal changes in budbreak percentages demonstrated dormancy progression in the studied apple cultivars and allowed distinguishing the three main dormancy phases: paradormancy (summer dormancy), endodormancy (deep dormancy), and ecodormancy (spring dormancy), along with transition periods between them. Using these data, we explored the suitability of several alternative methods to determine endodormancy release. Tabuenca's test, which predicts dormancy release based on the differences in dry weights of buds with and without forcing, showed promise for this purpose. However, our data indicated a need for considerable adjustments and validation of this test. Bud weight and water content of buds in the orchard did not align with budbreak percentages under forcing conditions, rendering them unsuitable for determining endodormancy release in 'Nicoter' and 'Topaz'. Shoot growth cessation did not seem to be connected with either dormancy progression or dormancy depth of the studied cultivars, whereas leaf fall coincided with the beginning of the transition from endo- to ecodormancy. This work addresses methodological limitations in dormancy research and suggests considering the mean time to budbreak and budbreak synchrony as additional criteria to assess tree dormancy status.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.). 东方栓皮栎(Quercus variabilis Bl.)枝叶栓塞阻力和水力电容的季节性共同介导水力安全。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-31 DOI: 10.1093/treephys/tpae109
Xin Huang, Zhuo-Liang Hou, Bo-Long Ma, Han Zhao, Zai-Min Jiang, Jing Cai

Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 MPa to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19-248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 MPa to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95-46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently > 1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive safety margins mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.

在气候变异加剧的时代,温带地区的季节性非常突出。能够适应季节性变化的气候条件的水力特性对树木的安全至关重要。然而,人们很少关注骨干林木干旱相关性状的种内季节性和水力安全性。我们研究了在中国温带森林中占主导地位的东方栓皮栎(Quercus variabilis Bl.)的主要形态和生理性状以及枝叶水平的多重水力安全系数(SMs)的季节性变化。气动测量结果表明,随着季节的变化,50%的枝条栓塞发生时的水势(P50_branch)从-3.34 兆帕下降到-4.23 兆帕,变异系数(CV)为 9.08%。边材容重范围为 48.19-248.08 kg m-3 MPa-1,秋季达到最高,冬季达到最低(变异系数为 60.58%)。再水化动力学证实,春秋两季的叶片易栓塞性(P50_leaf)高于夏季,其数值范围为-1.06 兆帕至-3.02 兆帕(CV 为 39.85%)。所有叶片压力-体积(PV)性状都随生长而变化,CV 值范围为 6.95-46.69%。边材密度与 P50_branch 和弹性储水液压容积呈显著负相关,而叶片单位面积质量与 PV 特性呈线性相关,但与 P50_leaf 无关。此外,树枝的典型SMs(树枝正午水势与P50_branch之间的差值)始终大于1.84 MPa,而且整个树枝普遍存在脆弱分段现象,这意味着变叶桉占优势的水力基础是可信的。不同季节存在不同的水力反应模式,导致上述生理特征介导的正安全系数。虽然变种鹅表现出较高的水力安全水平,但由于全球气候变化,其对夏季突发性干旱的易感性可能会增加。
{"title":"Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.).","authors":"Xin Huang, Zhuo-Liang Hou, Bo-Long Ma, Han Zhao, Zai-Min Jiang, Jing Cai","doi":"10.1093/treephys/tpae109","DOIUrl":"https://doi.org/10.1093/treephys/tpae109","url":null,"abstract":"<p><p>Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 MPa to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19-248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 MPa to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95-46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently > 1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive safety margins mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in situ 15N labeling experiment unveils distinct responses to N application approaches in a mountain beech forest. 原位 15N 标记实验揭示了山毛榉林对氮施用方法的不同反应。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-29 DOI: 10.1093/treephys/tpae104
Luca Da Ros, Mirco Rodeghiero, Maurizio Ventura, Roberto Tognetti, Giustino Tonon, Damiano Gianelle

Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality, and a potential net greenhouse gas emission. Traditional experiments often overlook the canopy's role in N fate, focusing instead on direct N addition to the forest floor. In our study, we applied 20 kg N ha y-1 of labeled 15NH415NO3 solution (δ15N = 30 ‰) both above and below the canopy, maintaining also control plots. We assessed ecosystem components before and after treatment, calculated N stocks, and used mass balance for fertilizer recovery analysis. Findings revealed that the above-canopy N addition intercepted up to 31 ± 4% of added N in foliage, a significant contrast to the negligible recovery in leaves with below-canopy treatment. Overall plant recovery was higher in the above-canopy treatment (43 ± 11%) compared to below (9 ± 24%). Post-vegetative season, about 15 ± 1% of above-canopy added N was transferred to soil via litterfall, indicating substantial N reabsorption or loss through volatilization, stemflow, or throughfall. In contrast, the below-canopy approach resulted in just 4.0 ± 0.6% recovery via litterfall. These results highlight a significant difference in N fate based on the application method. N applied to the canopy showed distinct recovery in transient compartments like foliage. However, over a few months, there was no noticeable change in N recovery in long-lived tissues across treatments. This implies that N application strategy does not significantly alter the distribution of simulated wet N deposition in high C/N tissues, underscoring the complex dynamics of forest N cycling.

自工业革命以来,大气中的氮沉降量显著增加,使陆地生态系统的氮输入量翻了一番。这可以缓解森林中的氮限制,潜在地提高生产力和碳吸收。然而,过量的氮会导致森林氮饱和,造成土壤酸化、养分失衡、生物多样性丧失、树木死亡率增加等问题,并可能造成温室气体净排放。传统的实验通常会忽略树冠在氮的归宿中的作用,而将重点放在直接向林地添加氮上。在我们的研究中,我们在树冠上下各施用了 20 kg N ha y-1 的标记 15NH415NO3 溶液(δ15N = 30 ‰),同时还保留了对照地块。我们评估了处理前后的生态系统成分,计算了氮储量,并利用质量平衡进行了肥料回收分析。研究结果表明,树冠上方的氮添加可在叶片中截获 31 ± 4% 的氮添加量,这与树冠下方处理时叶片中可忽略不计的氮回收量形成了鲜明对比。与树冠下处理(9 ± 24%)相比,树冠上处理的植物整体恢复率更高(43 ± 11%)。植被生长季节后,树冠上方添加的氮约有 15 ± 1%通过落叶转移到土壤中,这表明大量的氮通过挥发、茎流或直通落叶被重新吸收或流失。相比之下,树冠下方法通过落叶回收的氮仅为 4.0 ± 0.6%。这些结果突显了施肥方法对氮归宿的显著影响。施用到冠层的氮在叶片等瞬时分区中表现出明显的恢复。然而,在几个月的时间里,不同处理的长效组织中氮的恢复没有明显变化。这意味着氮的施用策略不会显著改变模拟湿氮沉积在高 C/N 组织中的分布,突出了森林氮循环的复杂动态。
{"title":"An in situ 15N labeling experiment unveils distinct responses to N application approaches in a mountain beech forest.","authors":"Luca Da Ros, Mirco Rodeghiero, Maurizio Ventura, Roberto Tognetti, Giustino Tonon, Damiano Gianelle","doi":"10.1093/treephys/tpae104","DOIUrl":"https://doi.org/10.1093/treephys/tpae104","url":null,"abstract":"<p><p>Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality, and a potential net greenhouse gas emission. Traditional experiments often overlook the canopy's role in N fate, focusing instead on direct N addition to the forest floor. In our study, we applied 20 kg N ha y-1 of labeled 15NH415NO3 solution (δ15N = 30 ‰) both above and below the canopy, maintaining also control plots. We assessed ecosystem components before and after treatment, calculated N stocks, and used mass balance for fertilizer recovery analysis. Findings revealed that the above-canopy N addition intercepted up to 31 ± 4% of added N in foliage, a significant contrast to the negligible recovery in leaves with below-canopy treatment. Overall plant recovery was higher in the above-canopy treatment (43 ± 11%) compared to below (9 ± 24%). Post-vegetative season, about 15 ± 1% of above-canopy added N was transferred to soil via litterfall, indicating substantial N reabsorption or loss through volatilization, stemflow, or throughfall. In contrast, the below-canopy approach resulted in just 4.0 ± 0.6% recovery via litterfall. These results highlight a significant difference in N fate based on the application method. N applied to the canopy showed distinct recovery in transient compartments like foliage. However, over a few months, there was no noticeable change in N recovery in long-lived tissues across treatments. This implies that N application strategy does not significantly alter the distribution of simulated wet N deposition in high C/N tissues, underscoring the complex dynamics of forest N cycling.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PSInet: A new global water potential network. PSInet:一个新的全球水潜力网络。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-27 DOI: 10.1093/treephys/tpae110
Ana Maria Restrepo-Acevedo, Jessica S Guo, Steven A Kannenberg, Michael C Benson, Daniel Beverly, Renata Diaz, William R L Anderegg, Daniel M Johnson, George Koch, Alexandra G Konings, Lauren E L Lowman, Jordi Martínez-Vilalta, Rafael Poyatos, H Jochen Schenk, Ashley M Matheny, Katherine A McCulloh, Jesse B Nippert, Rafael S Oliveira, Kimberly Novick

Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales, and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (2) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (3) Standardizing methodologies, processing, and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices, and early career training opportunities. (4) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.

鉴于气候变化带来的紧迫挑战,深入了解不断升级的干旱和高温压力对陆地生态系统的影响及其提供的重要服务至关重要。土壤和植物水势在调节生态系统内部水分动态方面起着关键作用,并直接控制植物功能和生态胁迫期间的死亡风险。然而,现有的水势观测存在很大的局限性,包括观测数据的零散性和不连续性、对相关时空尺度的表述不一致,以及在方法学方面存在诸多挑战。这些局限性阻碍了我们开展所需的全面综合研究,从而无法加深对植物功能的概念性理解,也无法建立在有限水分供应条件下的植物生存预测模型。在本文中,我们介绍了 PSInet(PSI--希腊字母Ψ,用于表示水势),这是一个新颖的研究人员和数据合作网络,旨在弥合目前水势数据方面的关键信息差距。PSInet 的主要目标是(1) 建立第一个可公开访问的植物和土壤水势测量时间序列全球数据库,同时提供与其他相关观测网络的重要联系。(2) 为所有研究不同阶段水势的科学家营造一个包容和多样化的合作环境。(3) 通过全球科学家社区的参与,传播标准化规程、最佳实践和早期职业培训机会, 使水势数据的方法、处理和解释标准化。(4) 促进利用 PSInet 数据库综合知识,解决我们在了解植物对各种环境压力的生理反应方面存在的突出差距。在世界迅速变暖和日益干旱化的情况下,哪些植物物种将茁壮成长,哪些植物物种将变得脆弱,PSInet 计划是应对基本研究挑战不可或缺的一部分。
{"title":"PSInet: A new global water potential network.","authors":"Ana Maria Restrepo-Acevedo, Jessica S Guo, Steven A Kannenberg, Michael C Benson, Daniel Beverly, Renata Diaz, William R L Anderegg, Daniel M Johnson, George Koch, Alexandra G Konings, Lauren E L Lowman, Jordi Martínez-Vilalta, Rafael Poyatos, H Jochen Schenk, Ashley M Matheny, Katherine A McCulloh, Jesse B Nippert, Rafael S Oliveira, Kimberly Novick","doi":"10.1093/treephys/tpae110","DOIUrl":"https://doi.org/10.1093/treephys/tpae110","url":null,"abstract":"<p><p>Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales, and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (2) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (3) Standardizing methodologies, processing, and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices, and early career training opportunities. (4) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The yellowhorn MYB transcription factor MYB30 is required for the wax accumulation and drought tolerance. 黄角 MYB 转录因子 MYB30 是蜡质积累和抗旱所必需的。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-27 DOI: 10.1093/treephys/tpae111
Xiaojuan Liu, Zhuo Ban, Yingying Yang, Huihui Xu, Yifan Cui, Chenxue Wang, Quanxin Bi, Haiyan Yu, Libing Wang

Yellowhorn (Xanthoceras sorbifolium) is an economically-important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of the electrophoretic mobility shift assay, the yeast one hybrid assay and the dual-luciferase assay demonstrated that XsMYB30 could directly and $$bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1, and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes, and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.

黄角树(Xanthoceras sorbifolium)是中国北方重要的经济树种,主要分布在水资源匮乏的干旱和半干旱地区。干旱影响其产量和适宜生长区域的扩大。研究发现,黄角树不同种质资源叶片蜡质含量差异显著,这与黄角树的抗旱性有很大关系。本研究从高蜡质新品种黄角'中实 4 号'中分离出 XsMYB30。DAP-Seq 技术显示,与脂肪酸相关的通路在 XsMYB30 的靶基因中显著富集。此外,电泳迁移试验、酵母一杂交试验和双荧光素酶试验的结果表明,XsMYB30能直接与蜡质生物合成(XsFAR4、XsCER1和XsKCS1)、脂质转移(XsLTPG1和XsLTP1)和脂肪酸合成(XsKASIII)相关基因的启动子结合,从而提高它们的表达量。此外,在杨树中过表达 XsMYB30 能促进这些靶基因的表达水平,并增加杨树叶片上的蜡沉积,从而显著提高植物的抗旱能力。这些研究结果表明,XsMYB30 是黄杨角质蜡生物合成和抗旱性的重要调控因子。
{"title":"The yellowhorn MYB transcription factor MYB30 is required for the wax accumulation and drought tolerance.","authors":"Xiaojuan Liu, Zhuo Ban, Yingying Yang, Huihui Xu, Yifan Cui, Chenxue Wang, Quanxin Bi, Haiyan Yu, Libing Wang","doi":"10.1093/treephys/tpae111","DOIUrl":"https://doi.org/10.1093/treephys/tpae111","url":null,"abstract":"<p><p>Yellowhorn (Xanthoceras sorbifolium) is an economically-important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of the electrophoretic mobility shift assay, the yeast one hybrid assay and the dual-luciferase assay demonstrated that XsMYB30 could directly and $$bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1, and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes, and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling intra-population functional variability patterns in a European beech (Fagus sylvatica L.) population from the southern range edge: drought resistance, post-drought recovery, and phenotypic plasticity. 揭示欧洲山毛榉(Fagus sylvatica L.)南部分布边缘种群的种群内功能变异模式:抗旱性、旱后恢复和表型可塑性。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-20 DOI: 10.1093/treephys/tpae107
David Sánchez-Gómez, Ismael Aranda

Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and its variability at the intra-population level is crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extend microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.

了解抗旱性、旱后恢复和表型可塑性的共变模式及其在种群内部的变异性,对于预测森林面对日益干旱的脆弱性至关重要。这方面的知识在迹地边缘尤为迫切,因为在这些地区,树种已接近其生态位边界。虽然这种接近性增加了它们的易感性,但这些种群被认为是抵御环境压力的宝贵基因库。在当前气候变化的背景下,保护这种基因变异性对物种的适应能力至关重要。在这里,我们研究了欧洲山毛榉(Fagus sylvatica L.)南部边缘种群中 16 个开放授粉家系的幼苗对试验性干旱的茎基部生长、气体交换和其他叶片功能特征的种群内模式。我们发现,在叶片功能特征、光合作用表现、生长模式和表型可塑性方面,种群内部对水分供应的反应存在很大差异。低表型可塑性与高抗旱性相关。不同母本品系的抗旱性和旱后光合作用恢复能力都有差异。然而,抗旱性和旱后恢复表现出独立的差异。我们还发现气孔对土壤干燥的敏感性在种群内存在差异,但这与抗旱性和旱后恢复能力都无关。我们的结论是,表型可塑性与抗旱性之间的反比关系并不一定是适应性可塑性不良的表现,相反,它可能反映了功能表现的稳定性,从而适应干旱。抗旱性与旱后恢复之间的独立变异在一定程度上促进了微进化和对日益干旱的适应。观察到的气孔对土壤干燥敏感性的变异与之前在其他尺度上的发现(如种间变异、种群间变异)一致,这对将等无水概念作为耐旱性的可靠替代物提出了挑战。
{"title":"Unveiling intra-population functional variability patterns in a European beech (Fagus sylvatica L.) population from the southern range edge: drought resistance, post-drought recovery, and phenotypic plasticity.","authors":"David Sánchez-Gómez, Ismael Aranda","doi":"10.1093/treephys/tpae107","DOIUrl":"https://doi.org/10.1093/treephys/tpae107","url":null,"abstract":"<p><p>Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and its variability at the intra-population level is crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extend microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings. 槲寄生引起的碳、水和养分失衡在树木年轮上留下了印记。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-20 DOI: 10.1093/treephys/tpae106
Ester González de Andrés, Antonio Gazol, José Ignacio Querejeta, Michele Colangelo, J Julio Camarero

Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable C and O isotopic signals and elemental composition of tree rings in silver fir (Abies alba) and Scots pine (Pinus sylvestris) forests infested with Viscum album. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O) and nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.

槲寄生是一种木质部吸水半寄生虫,依靠寄主吸收水分和养分。因此,它们会通过改变树木的碳、水关系和营养状况来损害树木在环境压力下的表现。为了提高我们对槲寄生和持续气候变化的生理反应的认识,我们研究了银冷杉(Abies alba)和苏格兰松(Pinus sylvestris)森林中被槲寄生侵染的树木年轮的径向生长、稳定的 C 和 O 同位素信号以及元素组成。我们比较了未受侵染(NI)和严重受侵染(SI)的冷杉和松树的基部面积增量(BAI)、内在水分利用效率(iWUE)、氧同位素组成(δ18O)以及养分浓度和化学计量比的时间序列(1990-2020 年),这些树木的种群位于西班牙东北部靠近该物种干旱分布极限的地区。SI 树历来生长速度较快,但在 2020 年之前的三十多年里 BAI 呈负增长趋势,到 2010 年代中期,其生长速度明显低于 NI 树。槲寄生侵扰与径向生长对蒸汽压力不足(大气干旱)的敏感性增强有关。与 NI 树木相比,SI 树木的 iWUE 增长(杉木)不太明显,iWUE 值(松树)较低。SI树较低的树环δ18O值可能是多种叠加效应同时作用的结果,其中包括叶层蒸发富集、源水同位素信号以及解剖学和物候学差异。我们观察到,在 SI 树的两种树种的树环木材中,钾(K)的营养都在恶化,同时锰(Mn)也在积累。我们认为,这种营养模式是由槲树引起的干旱胁迫的间接影响造成的,尤其是在松树中。通过对印刻在树木年轮上的不同生理指标进行综合分析,可以证明在季节性干旱地区,受槲树侵袭的针叶树逐渐出现碳、水和营养失衡。
{"title":"Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings.","authors":"Ester González de Andrés, Antonio Gazol, José Ignacio Querejeta, Michele Colangelo, J Julio Camarero","doi":"10.1093/treephys/tpae106","DOIUrl":"https://doi.org/10.1093/treephys/tpae106","url":null,"abstract":"<p><p>Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable C and O isotopic signals and elemental composition of tree rings in silver fir (Abies alba) and Scots pine (Pinus sylvestris) forests infested with Viscum album. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O) and nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel growth-promoting dark septate endophytic fungus improved drought tolerance in blueberries by modulating phytohormones and non-structural carbohydrates. 一种新型促进生长的暗隔内生真菌通过调节植物激素和非结构性碳水化合物提高了蓝莓的耐旱性。
IF 3.5 2区 农林科学 Q1 FORESTRY Pub Date : 2024-08-20 DOI: 10.1093/treephys/tpae105
Hongyan Su, Yingtian Guo, Liang Gu, Xiaomeng Shi, Yangyan Zhou, Fanlin Wu, Lei Wang

Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 derived from the blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, MDA and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the GA content, IAA, ZT and ABA varied significantly between the inoculated and control groups. SPS and S6PDH activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as SDH, SuSy, CWINV, HXK and FRK in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.

干旱是影响农业生产的一个重大全球性问题,而利用有益的根瘤微生物是提高干旱条件下农作物和森林生产力的有效方法之一。在这项研究中,我们鉴定了一种来自蓝莓根部的新型促生长暗隔内生菌(DSE)R16。在R16定殖的蓝莓根系表皮或皮层细胞内可见菌丝或小硬孢子,这符合DSE真菌的典型特征。接种 R16 能促进蓝莓幼苗的生长,在 PEG 诱导的干旱条件下,与对照组相比优势更为显著。在盆栽蓝莓植株上比较了接种组和对照组与抗旱相关的生理指标,包括叶绿素含量、净光合速率、根系活性、MDA 和 H2O2 含量,结果表明 R16 定殖减轻了蓝莓植株的干旱伤害。我们进一步分析了 R16 对植物激素和非结构碳水化合物(NSCs)的影响,以探讨 R16 提高蓝莓幼苗抗旱性的机制。结果表明,除 GA 含量外,IAA、ZT 和 ABA 在接种组和对照组之间存在显著差异。接种组和对照组在干旱处理前后的SPS和S6PDH活性(分别是合成蔗糖和山梨醇的关键酶)以及根中的SDH、SuSy、CWINV、HXK和FRK活性(参与NSCs代谢的关键酶)均有显著差异。这些结果表明,R16 定殖对蓝莓幼苗抗旱性的积极影响部分归因于植物激素和糖代谢的调控。这项研究为 DSE 真菌与寄主植物之间相互作用的研究以及 DSE 制剂在农业中的应用提供了宝贵的信息。
{"title":"A novel growth-promoting dark septate endophytic fungus improved drought tolerance in blueberries by modulating phytohormones and non-structural carbohydrates.","authors":"Hongyan Su, Yingtian Guo, Liang Gu, Xiaomeng Shi, Yangyan Zhou, Fanlin Wu, Lei Wang","doi":"10.1093/treephys/tpae105","DOIUrl":"https://doi.org/10.1093/treephys/tpae105","url":null,"abstract":"<p><p>Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 derived from the blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, MDA and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the GA content, IAA, ZT and ABA varied significantly between the inoculated and control groups. SPS and S6PDH activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as SDH, SuSy, CWINV, HXK and FRK in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tree physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1