Adam D Price, Matthew R Baucom, Ellen R Becker, Chad M Archdeacon, Maia P Smith, Chelsea Caskey, Rebecca Schuster, Thomas C Blakeman, Richard J Strilka, Timothy A Pritts, Michael D Goodman
{"title":"Systemic Inflammatory Effect of Hypobaria During Aeromedical Evacuation after Porcine Traumatic Brain Injury.","authors":"Adam D Price, Matthew R Baucom, Ellen R Becker, Chad M Archdeacon, Maia P Smith, Chelsea Caskey, Rebecca Schuster, Thomas C Blakeman, Richard J Strilka, Timothy A Pritts, Michael D Goodman","doi":"10.1097/XCS.0000000000001119","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is used by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation after TBI that could contribute to more severe TBI-related secondary injury.</p><p><strong>Study design: </strong>Thirty-six female pigs were used to test TBI vs Sham TBI, hypoxia vs normoxia, and hypobaria vs ground conditions. TBI was induced by controlled cortical injury, hypobaric conditions of 12,000 ft were established in an altitude chamber, and hypoxic exposure was titrated to 85% SpO 2 while at altitude. Serum cytokines, ubiquitin C-terminal hydrolase L1, and TBI biomarkers were analyzed via ELISA. Gross analysis and staining of cortex and hippocampus tissue was completed for glial fibrillary acidic protein and phosphorylated tau.</p><p><strong>Results: </strong>Serum interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly elevated after TBI in pigs exposed to altitude-induced hypobaria/hypoxia, as well as hypobaria alone, compared with ground level/normoxia. No difference in TBI biomarkers after TBI or hypobaric, hypoxic exposure was noted. No difference in brain tissue glial fibrillary acidic protein or phosphorylated tau when comparing the most different conditions of Sham TBI + ground or normoxia with the TBI + hypobaria/hypoxia group was noted.</p><p><strong>Conclusions: </strong>The hypobaric environment of AE induces systemic inflammation after TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE after TBI.</p>","PeriodicalId":17140,"journal":{"name":"Journal of the American College of Surgeons","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Surgeons","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/XCS.0000000000001119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is used by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation after TBI that could contribute to more severe TBI-related secondary injury.
Study design: Thirty-six female pigs were used to test TBI vs Sham TBI, hypoxia vs normoxia, and hypobaria vs ground conditions. TBI was induced by controlled cortical injury, hypobaric conditions of 12,000 ft were established in an altitude chamber, and hypoxic exposure was titrated to 85% SpO 2 while at altitude. Serum cytokines, ubiquitin C-terminal hydrolase L1, and TBI biomarkers were analyzed via ELISA. Gross analysis and staining of cortex and hippocampus tissue was completed for glial fibrillary acidic protein and phosphorylated tau.
Results: Serum interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly elevated after TBI in pigs exposed to altitude-induced hypobaria/hypoxia, as well as hypobaria alone, compared with ground level/normoxia. No difference in TBI biomarkers after TBI or hypobaric, hypoxic exposure was noted. No difference in brain tissue glial fibrillary acidic protein or phosphorylated tau when comparing the most different conditions of Sham TBI + ground or normoxia with the TBI + hypobaria/hypoxia group was noted.
Conclusions: The hypobaric environment of AE induces systemic inflammation after TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE after TBI.
期刊介绍:
The Journal of the American College of Surgeons (JACS) is a monthly journal publishing peer-reviewed original contributions on all aspects of surgery. These contributions include, but are not limited to, original clinical studies, review articles, and experimental investigations with clear clinical relevance. In general, case reports are not considered for publication. As the official scientific journal of the American College of Surgeons, JACS has the goal of providing its readership the highest quality rapid retrieval of information relevant to surgeons.