Goodness–of–fit tests based on the min–characteristic function

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-05-16 DOI:10.1016/j.csda.2024.107988
S.G. Meintanis , B. Milošević , M.D. Jiménez–Gamero
{"title":"Goodness–of–fit tests based on the min–characteristic function","authors":"S.G. Meintanis ,&nbsp;B. Milošević ,&nbsp;M.D. Jiménez–Gamero","doi":"10.1016/j.csda.2024.107988","DOIUrl":null,"url":null,"abstract":"<div><p>Tests of fit for classes of distributions that include the Weibull, the Pareto and the Fréchet families are proposed. The new tests employ the novel tool of the min–characteristic function and are based on an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>–type weighted distance between this function and its empirical counterpart applied on suitably standardized data. If data–standardization is performed using the MLE of the distributional parameters then the method reduces to testing for the standard member of the family, with parameter values known and set equal to one. Asymptotic properties of the tests are investigated. A Monte Carlo study is presented that includes the new procedure as well as competitors for the purpose of specification testing with three extreme value distributions. The new tests are also applied on a few real–data sets.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000720/pdfft?md5=345ca757392dc6a128ee30fc0f6964c2&pid=1-s2.0-S0167947324000720-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000720","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Tests of fit for classes of distributions that include the Weibull, the Pareto and the Fréchet families are proposed. The new tests employ the novel tool of the min–characteristic function and are based on an L2–type weighted distance between this function and its empirical counterpart applied on suitably standardized data. If data–standardization is performed using the MLE of the distributional parameters then the method reduces to testing for the standard member of the family, with parameter values known and set equal to one. Asymptotic properties of the tests are investigated. A Monte Carlo study is presented that includes the new procedure as well as competitors for the purpose of specification testing with three extreme value distributions. The new tests are also applied on a few real–data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小特征函数的拟合优度检验
提出了对包括魏布勒、帕累托和弗雷谢家族在内的各类分布的拟合度测试。新测试采用了新颖的最小特征函数工具,并基于该函数与应用于适当标准化数据的经验对应函数之间的 L2 型加权距离。如果使用分布参数的 MLE 进行数据标准化,那么该方法就简化为对已知参数值并设为 1 的标准族成员进行检验。对测试的渐近特性进行了研究。本文介绍了蒙特卡罗研究,其中包括新程序以及竞争对手使用三种极值分布进行规范测试的情况。新的检验还应用于一些真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Goodness–of–fit tests based on the min–characteristic function Editorial Board A switching state-space transmission model for tracking epidemics and assessing interventions Empirical Bayes Poisson matrix completion Transfer learning via random forests: A one-shot federated approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1