High-performance tin perovskite transistors through formate pseudohalide engineering

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-05-21 DOI:10.1016/j.mser.2024.100806
Geonwoong Park , Wonryeol Yang , Ao Liu , Huihui Zhu , Filippo De Angelis , Yong-Young Noh
{"title":"High-performance tin perovskite transistors through formate pseudohalide engineering","authors":"Geonwoong Park ,&nbsp;Wonryeol Yang ,&nbsp;Ao Liu ,&nbsp;Huihui Zhu ,&nbsp;Filippo De Angelis ,&nbsp;Yong-Young Noh","doi":"10.1016/j.mser.2024.100806","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of high-performance p-type semiconducting materials hinders the integration of complementary metal-oxide semiconductors with well-established n-type metal-oxide counterparts. Although tin halide perovskites are promising p-type material candidates, their practical implementation is hindered by excessive hole concentrations and difficulties in precisely controlling crystallization, which leads to poor device performance and yield. In this paper, we propose a formate pseudohalide engineering method to overcome these issues and demonstrate high-performance tin perovskite thin-film transistors (TFTs). The incorporation of formate anion greatly suppresses the vacancy defects at the surfaces of the perovskite films with an increase in crystallinity and grain size. This reduces the hole concentration and eliminates the dependence on the addition of excessive tin fluoride for hole suppression. Hence, high-performance TFTs with a high average field-effect hole mobility of 57.34 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and on/off current ratios surpassing 10<sup>8</sup> can be achieved, approaching p-channel low-temperature polysilicon devices.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100806"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000366","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of high-performance p-type semiconducting materials hinders the integration of complementary metal-oxide semiconductors with well-established n-type metal-oxide counterparts. Although tin halide perovskites are promising p-type material candidates, their practical implementation is hindered by excessive hole concentrations and difficulties in precisely controlling crystallization, which leads to poor device performance and yield. In this paper, we propose a formate pseudohalide engineering method to overcome these issues and demonstrate high-performance tin perovskite thin-film transistors (TFTs). The incorporation of formate anion greatly suppresses the vacancy defects at the surfaces of the perovskite films with an increase in crystallinity and grain size. This reduces the hole concentration and eliminates the dependence on the addition of excessive tin fluoride for hole suppression. Hence, high-performance TFTs with a high average field-effect hole mobility of 57.34 cm2 V−1 s−1 and on/off current ratios surpassing 108 can be achieved, approaching p-channel low-temperature polysilicon devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过甲酸盐假卤化物工程实现高性能的锡过氧化物晶体管
高性能 p 型半导体材料的缺乏阻碍了互补金属氧化物半导体与成熟的 n 型金属氧化物半导体的整合。虽然卤化锡过氧化物是很有前景的 p 型候选材料,但其实际应用却受到过高的空穴浓度和难以精确控制结晶的阻碍,导致器件性能和产量低下。在本文中,我们提出了一种甲酸盐假卤化物工程方法来克服这些问题,并展示了高性能的锡过氧化物薄膜晶体管(TFT)。甲酸根阴离子的加入大大抑制了包晶体薄膜表面的空位缺陷,同时增加了结晶度和晶粒尺寸。这就降低了空穴浓度,消除了在抑制空穴时对添加过量氟化锡的依赖。因此,可以实现平均场效应空穴迁移率高达 57.34 cm2 V-1 s-1、导通/截止电流比超过 108 的高性能 TFT,接近 p 沟道低温多晶硅器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Graphdiyne-based molecular active materials and devices for emerging smart applications Exploring Niobium oxide-based materials for fast-charging lithium-ion anodes: Insights from structure to property Recent progress of hydrogel-based bioelectronics for mechanophysiological signal sensing Dopant-induced interactions in spiro-OMeTAD: Advancing hole transport for perovskite solar cells A review on additive manufacturing of piezoelectric ceramics: From feedstock development to properties of sintered parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1