Shuai Qi, Allan Degen, Wenyin Wang, Mei Huang, Dongmei Li, Binyu Luo, Jianhui Xu, Zhiqiang Dang, Ruiying Guo, Zhanhuan Shang
{"title":"Systemic review for the use of biochar to mitigate soil degradation","authors":"Shuai Qi, Allan Degen, Wenyin Wang, Mei Huang, Dongmei Li, Binyu Luo, Jianhui Xu, Zhiqiang Dang, Ruiying Guo, Zhanhuan Shang","doi":"10.1111/gcbb.13147","DOIUrl":null,"url":null,"abstract":"<p>Biochar, a black carbon material produced by high-temperature, low-oxygen pyrolysis of organic solids, can improve soil properties and realize carbon neutrality. However, how to effectively produce and apply biochar in the face of the complex soil environment and intractable widespread land degradation is still uncertain. This review is based on 1073 sets of data in 316 publications to address this issue. Firstly, the impact of different process parameters, namely feedstocks, pyrolysis temperature and activation on physicochemical properties of biochar are systematically summarized. Secondly, the effect of biochar on different soil degradation problems are reviewed from the perspective of the interaction between the physicochemical properties of biochar and soil characteristics. The “matching” of biochar properties, level of degradation and environmental factors can be used to design the desired biochar. Finally, future research should focus on biochar aging and costs and benefits of using biochar. The concept of “artificial intelligence designed biochar” is discussed to improve the degree of automation in biochar production and the predictability and suitability of its application for specific cases.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 6","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar, a black carbon material produced by high-temperature, low-oxygen pyrolysis of organic solids, can improve soil properties and realize carbon neutrality. However, how to effectively produce and apply biochar in the face of the complex soil environment and intractable widespread land degradation is still uncertain. This review is based on 1073 sets of data in 316 publications to address this issue. Firstly, the impact of different process parameters, namely feedstocks, pyrolysis temperature and activation on physicochemical properties of biochar are systematically summarized. Secondly, the effect of biochar on different soil degradation problems are reviewed from the perspective of the interaction between the physicochemical properties of biochar and soil characteristics. The “matching” of biochar properties, level of degradation and environmental factors can be used to design the desired biochar. Finally, future research should focus on biochar aging and costs and benefits of using biochar. The concept of “artificial intelligence designed biochar” is discussed to improve the degree of automation in biochar production and the predictability and suitability of its application for specific cases.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.