Evaluation of tauroursodeoxycholic acid in liver cells’ cultures by MEKC: Initial hints to comprehend its role in diabetes mellitus of obese individuals
Bruna Eduarda Santos Simões, Mariana Roberta Rodrigues Muniz, Thiago dosReis Araujo, Everardo Magalhães Carneiro, Ana Valéria Colnaghi Simionato
{"title":"Evaluation of tauroursodeoxycholic acid in liver cells’ cultures by MEKC: Initial hints to comprehend its role in diabetes mellitus of obese individuals","authors":"Bruna Eduarda Santos Simões, Mariana Roberta Rodrigues Muniz, Thiago dosReis Araujo, Everardo Magalhães Carneiro, Ana Valéria Colnaghi Simionato","doi":"10.1002/elps.202300223","DOIUrl":null,"url":null,"abstract":"<p>Genetic factors, diet, lifestyle, and other factors lead to various complications in the body, such as obesity and other chronic diseases. The inflammatory state caused by excessive accumulation of body fat affects the pathways related to the control of glycemic homeostasis, leading to a high demand for insulin, to subsequent failure of stressed β cells, and development of type 2 diabetes mellitus (T2DM). The study of new endocrine signalers, such as bile acids (BAs), becomes necessary as it allows the development of alternatives for T2DM treatment. In this work, a methodology was developed to quantify tauroursodeoxycholic BA (TUDCA) in liver cells of the HepG2 strain treated in hyperlipidic medium. This BA helps to improve insulin clearance by increasing the expression of the insulin-degrading enzyme, restoring sensitivity to this hormone, and making it viable for treating T2DM. Herein, a targeted metabolomic method for TUDCA determination in extracellular medium of hepatocyte matrices by micellar electrokinetic chromatography-UV was optimized, validated, and applied. The optimized background electrolyte was composed of 40 mmol/L sodium cholate and 30 mmol/L sodium tetraborate at pH 9.0. The following figures of merit were evaluated: linearity, limit of quantification, limit of detection, accuracy, and precision. Data obtained with the validated electrophoretic method showed a self-stimulation of TUDCA production in media supplemented only with BA. On the other hand, TUDCA concentration was reduced in the hyperlipidic medium. This suggests that, in these media, the effect of TUDCA is reduced, such as self-stimulated production and consequent regulation of glycemic homeostasis. Therefore, the results reinforce the need for investigating TUDCA as a potential T2DM biomarker as well as its use to treat several comorbidities, such as obesity and diabetes mellitus.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202300223","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic factors, diet, lifestyle, and other factors lead to various complications in the body, such as obesity and other chronic diseases. The inflammatory state caused by excessive accumulation of body fat affects the pathways related to the control of glycemic homeostasis, leading to a high demand for insulin, to subsequent failure of stressed β cells, and development of type 2 diabetes mellitus (T2DM). The study of new endocrine signalers, such as bile acids (BAs), becomes necessary as it allows the development of alternatives for T2DM treatment. In this work, a methodology was developed to quantify tauroursodeoxycholic BA (TUDCA) in liver cells of the HepG2 strain treated in hyperlipidic medium. This BA helps to improve insulin clearance by increasing the expression of the insulin-degrading enzyme, restoring sensitivity to this hormone, and making it viable for treating T2DM. Herein, a targeted metabolomic method for TUDCA determination in extracellular medium of hepatocyte matrices by micellar electrokinetic chromatography-UV was optimized, validated, and applied. The optimized background electrolyte was composed of 40 mmol/L sodium cholate and 30 mmol/L sodium tetraborate at pH 9.0. The following figures of merit were evaluated: linearity, limit of quantification, limit of detection, accuracy, and precision. Data obtained with the validated electrophoretic method showed a self-stimulation of TUDCA production in media supplemented only with BA. On the other hand, TUDCA concentration was reduced in the hyperlipidic medium. This suggests that, in these media, the effect of TUDCA is reduced, such as self-stimulated production and consequent regulation of glycemic homeostasis. Therefore, the results reinforce the need for investigating TUDCA as a potential T2DM biomarker as well as its use to treat several comorbidities, such as obesity and diabetes mellitus.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.