C.-M. Geilfus, C. Zörb, J. J. Jones, M. A. Wimmer, S. M. Schmöckel
{"title":"Water for agriculture: more crop per drop","authors":"C.-M. Geilfus, C. Zörb, J. J. Jones, M. A. Wimmer, S. M. Schmöckel","doi":"10.1111/plb.13652","DOIUrl":null,"url":null,"abstract":"<p>Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":"26 4","pages":"499-507"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/plb.13652","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/plb.13652","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.