M F Alves, F Pinheiro, D da Silva Graciano, K L G De Toni, J F A Baumgratz
Hybrid zones offer unique insight into reproductive barriers and plant speciation mechanisms. This study investigated postzygotic reproductive isolation in the natural hybrid Epidendrum × purpureum, which occurs in sympatry with its parent species, Epidendrum denticulatum and E. orchidiflorum. We examined the development of male and female gametophytes and the events leading to seed formation in this hybrid zone. Floral buds and flowers from E. × purpureum individuals were collected at various stages of development. Both self-pollination and backcrosses between hybrids and parental species were performed to follow ovule and seed development up to 60 days after pollination. The material was analysed using optical and confocal microscopy. In most hybrids, microsporogenesis and microgametogenesis occur regularly, forming viable male gametophytes. Non-viable male gametophytes were also observed and are the result of symmetrical mitotic division. The development of the female gametophyte occurs after self-pollination, and proceeds regularly, resulting in a reduced female gametophyte. Embryo development in the parental species occurs without abnormalities, while in backcrosses between hybrids and parental species, most embryos degenerate. Embryo degeneration in the crosses between hybrids can be explained by genetic incompatibilities. The co-occurrence of viable embryos and degenerating embryos in backcrosses between hybrids and parental species point to incomplete postzygotic reproductive barriers between the hybrid and the progenitors. Our findings suggest that E. × purpureum could facilitate gene flow between parental species, as much of its embryological development occurs without abnormalities.
{"title":"Permeability of postzygotic barriers: embryology of a partially fertile Epidendrum (Orchidaceae) hybrid.","authors":"M F Alves, F Pinheiro, D da Silva Graciano, K L G De Toni, J F A Baumgratz","doi":"10.1111/plb.13748","DOIUrl":"https://doi.org/10.1111/plb.13748","url":null,"abstract":"<p><p>Hybrid zones offer unique insight into reproductive barriers and plant speciation mechanisms. This study investigated postzygotic reproductive isolation in the natural hybrid Epidendrum × purpureum, which occurs in sympatry with its parent species, Epidendrum denticulatum and E. orchidiflorum. We examined the development of male and female gametophytes and the events leading to seed formation in this hybrid zone. Floral buds and flowers from E. × purpureum individuals were collected at various stages of development. Both self-pollination and backcrosses between hybrids and parental species were performed to follow ovule and seed development up to 60 days after pollination. The material was analysed using optical and confocal microscopy. In most hybrids, microsporogenesis and microgametogenesis occur regularly, forming viable male gametophytes. Non-viable male gametophytes were also observed and are the result of symmetrical mitotic division. The development of the female gametophyte occurs after self-pollination, and proceeds regularly, resulting in a reduced female gametophyte. Embryo development in the parental species occurs without abnormalities, while in backcrosses between hybrids and parental species, most embryos degenerate. Embryo degeneration in the crosses between hybrids can be explained by genetic incompatibilities. The co-occurrence of viable embryos and degenerating embryos in backcrosses between hybrids and parental species point to incomplete postzygotic reproductive barriers between the hybrid and the progenitors. Our findings suggest that E. × purpureum could facilitate gene flow between parental species, as much of its embryological development occurs without abnormalities.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Didion-Gency, J Deluigi, J Gisler, T Juillard, M Schaub, A Tuñas-Corzon, C Grossiord
Chronic reductions in soil moisture combined with high air temperatures can modify tree carbon and water relations. However, little is known about how trees acclimate their foliar structure to the individual and combined effects of these two climate drivers. We used open-top chambers to determine the multi-year effects of chronic air warming (+5 °C) and soil moisture reduction (-50%) alone and in combination on the foliar anatomy of two European tree species. We further investigated how these climate drivers affected the relationship between foliar anatomy and physiology/chemistry in young downy oak and European beech trees. After 4 years, reduced soil moisture led to development of thinner leaves with a narrower epidermis and lower gas exchange for oak and beech, but to a lesser extent in the latter. In contrast, prolonged warming did not affect the anatomical and physiological/chemical traits in either species. Warming also did not exacerbate the impacts of dry soils, highlighting soil moisture as the key driver in leaf anatomical shifts. While soil moisture altered oak foliar anatomy, and the physiology and chemistry of both species, our work revealed a limited acclimation potential towards more drought- and heat-tolerant leaves as conditions become drier and warmer, suggesting potentially high vulnerability of both species to future climate predictions.
{"title":"Reduced soil moisture drives leaf anatomical shifts more than chronically elevated temperatures in European temperate trees.","authors":"M Didion-Gency, J Deluigi, J Gisler, T Juillard, M Schaub, A Tuñas-Corzon, C Grossiord","doi":"10.1111/plb.13745","DOIUrl":"https://doi.org/10.1111/plb.13745","url":null,"abstract":"<p><p>Chronic reductions in soil moisture combined with high air temperatures can modify tree carbon and water relations. However, little is known about how trees acclimate their foliar structure to the individual and combined effects of these two climate drivers. We used open-top chambers to determine the multi-year effects of chronic air warming (+5 °C) and soil moisture reduction (-50%) alone and in combination on the foliar anatomy of two European tree species. We further investigated how these climate drivers affected the relationship between foliar anatomy and physiology/chemistry in young downy oak and European beech trees. After 4 years, reduced soil moisture led to development of thinner leaves with a narrower epidermis and lower gas exchange for oak and beech, but to a lesser extent in the latter. In contrast, prolonged warming did not affect the anatomical and physiological/chemical traits in either species. Warming also did not exacerbate the impacts of dry soils, highlighting soil moisture as the key driver in leaf anatomical shifts. While soil moisture altered oak foliar anatomy, and the physiology and chemistry of both species, our work revealed a limited acclimation potential towards more drought- and heat-tolerant leaves as conditions become drier and warmer, suggesting potentially high vulnerability of both species to future climate predictions.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Colak, A Kurt-Celebi, M R Roth, R Welti, H Torun, F A Ayaz
Cadmium (Cd) is an abiotic stressor negatively affecting plant growth and reducing crop productivity. The effects of Cd (25 μM) and of pre-soaking seeds with salicylic acid (SA) (500 μM) on morphological, physiological, and glycerolipid changes in two cultivars of wheat (Triticum aestivum L. 'Tosunbey' and 'Cumhuriyet') were explored. Parameters measured were length, fresh and dry biomass, Cd concentration, osmotic potential (ψ), lipid peroxidation, and polar lipid species in roots and leaves, as well as leaf chlorophyll a, carotenoids, and fv/fm. Fresh biomass of roots and leaves and leaf length were strongly depressed by Cd treatment compared to the control, but significantly increased with SA + Cd compared to Cd alone. Cd reduced leaf levels of chlorophyll a, carotenoids, and fv/fm, compared to controls. Treatment with SA + Cd increased pigment levels and fv/fm compared to Cd alone. Cd treatment led to a decrease in DW of total membrane lipids in leaves and depressed levels of monogalactosyldiacylglycerol and phosphatidic acid in leaves and roots of both cultivars. The effects of SA priming and SA + Cd treatment on lipid content and composition were cultivar-specific, suggesting that lipid metabolism may not be a primary target underlying SA remediation of the damaging effects of Cd on wheat growth and development.
镉(Cd)是一种非生物胁迫因子,会对植物生长产生负面影响并降低作物产量。本研究探讨了镉 (25 μM) 和水杨酸 (SA) (500 μM) 对两种小麦栽培品种(Triticum aestivum L. 'Tosunbey' 和 'Cumhuriyet')的形态、生理和甘油脂变化的影响。测量的参数包括根和叶的长度、鲜生物量和干生物量、镉浓度、渗透势 (ψ)、脂质过氧化、极性脂质种类以及叶绿素 a、类胡萝卜素和 fv/fm。与对照组相比,镉处理严重抑制了根和叶片的新鲜生物量以及叶片长度,但与单用镉处理相比,SA + 镉处理显著增加了根和叶片的新鲜生物量以及叶片长度。与对照组相比,镉降低了叶片的叶绿素 a、类胡萝卜素和 fv/fm 水平。与单用镉处理相比,用 SA + Cd 处理可提高色素水平和 fv/fm。镉处理导致两个品种的叶片总膜脂质 DW 下降,叶片和根部的单半乳糖基二乙酰甘油和磷脂酸水平降低。SA 诱导和 SA + Cd 处理对脂质含量和组成的影响具有栽培品种特异性,表明脂质代谢可能不是 SA 修复镉对小麦生长发育的破坏作用的主要目标。
{"title":"Salicylic acid priming before cadmium exposure increases wheat growth but does not uniformly reverse cadmium effects on membrane glycerolipids.","authors":"N Colak, A Kurt-Celebi, M R Roth, R Welti, H Torun, F A Ayaz","doi":"10.1111/plb.13736","DOIUrl":"https://doi.org/10.1111/plb.13736","url":null,"abstract":"<p><p>Cadmium (Cd) is an abiotic stressor negatively affecting plant growth and reducing crop productivity. The effects of Cd (25 μM) and of pre-soaking seeds with salicylic acid (SA) (500 μM) on morphological, physiological, and glycerolipid changes in two cultivars of wheat (Triticum aestivum L. 'Tosunbey' and 'Cumhuriyet') were explored. Parameters measured were length, fresh and dry biomass, Cd concentration, osmotic potential (ψ), lipid peroxidation, and polar lipid species in roots and leaves, as well as leaf chlorophyll a, carotenoids, and fv/fm. Fresh biomass of roots and leaves and leaf length were strongly depressed by Cd treatment compared to the control, but significantly increased with SA + Cd compared to Cd alone. Cd reduced leaf levels of chlorophyll a, carotenoids, and fv/fm, compared to controls. Treatment with SA + Cd increased pigment levels and fv/fm compared to Cd alone. Cd treatment led to a decrease in DW of total membrane lipids in leaves and depressed levels of monogalactosyldiacylglycerol and phosphatidic acid in leaves and roots of both cultivars. The effects of SA priming and SA + Cd treatment on lipid content and composition were cultivar-specific, suggesting that lipid metabolism may not be a primary target underlying SA remediation of the damaging effects of Cd on wheat growth and development.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M V Checchio, A L Bacha, W C Carrega, G da Silveira Sousa Júnior, P L da Costa Aguiar Alves, P L Gratão
Peanut (Arachis hypogaea L.) is the fourth most cultivated oilseed in the world, but its cultivation is subject to fluctuations in water demand. Current studies of tolerance between cultivars and physiological mechanisms involved in plant recovery after drought are insufficient for selection of tolerant cultivars. We evaluated tolerance of different peanut cultivars to water deficit and subsequent rehydration, based on physiological and biochemical status. Gas exchange, photosynthetic pigments, Fv/Fm, MDA, H2O2 and antioxidant enzyme activity were analysed. Drought stress and rehydration triggered distinct changes in pigments, Fv/Fm, gas exchange, and H2O2 across genotypes, with increased MDA in all cultivars under stress. Based on multivariate analysis, 'IAC Sempre Verde' was identified as most drought sensitive, while 'IAC OL3', 'IAC 503', and 'IAC OL6' exhibited variations in physiological responses and antioxidant activity correlated to their respective tolerance levels. Notably, 'IAC OL3' had higher WUE and enhanced enzymatic defence and was classified as the most drought tolerant in this context. The above findings suggest that antioxidant metabolism is a important factor for plant recovery post-rehydration. Our study provides insights into antioxidant and physiological responses of peanut cultivars, which can support breeding programs for selection of drought-tolerant genotypes. Future field studies should be conducted for a better understanding of tolerance of these cultivars, particularly through correlation of these data with crop yield impact.
{"title":"Modulatory responses of physiological and biochemical status are related to drought tolerance levels in peanut cultivars.","authors":"M V Checchio, A L Bacha, W C Carrega, G da Silveira Sousa Júnior, P L da Costa Aguiar Alves, P L Gratão","doi":"10.1111/plb.13740","DOIUrl":"https://doi.org/10.1111/plb.13740","url":null,"abstract":"<p><p>Peanut (Arachis hypogaea L.) is the fourth most cultivated oilseed in the world, but its cultivation is subject to fluctuations in water demand. Current studies of tolerance between cultivars and physiological mechanisms involved in plant recovery after drought are insufficient for selection of tolerant cultivars. We evaluated tolerance of different peanut cultivars to water deficit and subsequent rehydration, based on physiological and biochemical status. Gas exchange, photosynthetic pigments, F<sub>v</sub>/F<sub>m</sub>, MDA, H<sub>2</sub>O<sub>2</sub> and antioxidant enzyme activity were analysed. Drought stress and rehydration triggered distinct changes in pigments, F<sub>v</sub>/F<sub>m</sub>, gas exchange, and H<sub>2</sub>O<sub>2</sub> across genotypes, with increased MDA in all cultivars under stress. Based on multivariate analysis, 'IAC Sempre Verde' was identified as most drought sensitive, while 'IAC OL3', 'IAC 503', and 'IAC OL6' exhibited variations in physiological responses and antioxidant activity correlated to their respective tolerance levels. Notably, 'IAC OL3' had higher WUE and enhanced enzymatic defence and was classified as the most drought tolerant in this context. The above findings suggest that antioxidant metabolism is a important factor for plant recovery post-rehydration. Our study provides insights into antioxidant and physiological responses of peanut cultivars, which can support breeding programs for selection of drought-tolerant genotypes. Future field studies should be conducted for a better understanding of tolerance of these cultivars, particularly through correlation of these data with crop yield impact.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M M Strelin, S S Gavini, N C Soares, V R Chalcoff, M A Aizen, E E Zattara, G L Gleiser
Angiosperm pollen, the male gametophyte, plays a crucial role in facilitating fertilization by protecting and transporting male sperm cells to the female pistil. Despite their seemingly simple structure, pollen grains undergo intricate development to produce viable sperm cells capable of fertilizing the egg cell. Factors such as resource limitation and plant aging can disrupt normal pollen development and affect pollen performance. We investigated the influence of plant resources and aging on pollen developmental failure in Azorella nivalis Phil., an exceptionally long-lived high-Andean species that grows in a stressful alpine environment. Leveraging the modular nature of plants, we aimed to identify intra-individual sources of variation in pollen developmental failure. By using pollen viability and variation in viable pollen grain size as indicators of pollen developmental performance, we assessed whether proxies of plant resource availability and aging influenced these pollen traits at the inter-individual, inter-flower and intra-flower levels. Our findings revealed decreased pollen viability in putative resource-depleted flowers and in shoots that experienced higher levels of meristematic divisions from the zygote (i.e., greater cell depth). Additionally, we observed increased variability in the size of viable pollen grains in resource-depleted anthers. Our study suggests that resource availability and shoot aging are critical determinants shaping pollen development in long-lived plants at the intra-individual level. These findings contribute to our understanding of how differences in male fitness can arise in plants, with implications for their evolutionary trajectory.
{"title":"Exploring the influences of resource limitation and plant aging on pollen development in Azorella nivalis Phil. (Apiaceae), a long-lived high-Andean cushion plant.","authors":"M M Strelin, S S Gavini, N C Soares, V R Chalcoff, M A Aizen, E E Zattara, G L Gleiser","doi":"10.1111/plb.13742","DOIUrl":"https://doi.org/10.1111/plb.13742","url":null,"abstract":"<p><p>Angiosperm pollen, the male gametophyte, plays a crucial role in facilitating fertilization by protecting and transporting male sperm cells to the female pistil. Despite their seemingly simple structure, pollen grains undergo intricate development to produce viable sperm cells capable of fertilizing the egg cell. Factors such as resource limitation and plant aging can disrupt normal pollen development and affect pollen performance. We investigated the influence of plant resources and aging on pollen developmental failure in Azorella nivalis Phil., an exceptionally long-lived high-Andean species that grows in a stressful alpine environment. Leveraging the modular nature of plants, we aimed to identify intra-individual sources of variation in pollen developmental failure. By using pollen viability and variation in viable pollen grain size as indicators of pollen developmental performance, we assessed whether proxies of plant resource availability and aging influenced these pollen traits at the inter-individual, inter-flower and intra-flower levels. Our findings revealed decreased pollen viability in putative resource-depleted flowers and in shoots that experienced higher levels of meristematic divisions from the zygote (i.e., greater cell depth). Additionally, we observed increased variability in the size of viable pollen grains in resource-depleted anthers. Our study suggests that resource availability and shoot aging are critical determinants shaping pollen development in long-lived plants at the intra-individual level. These findings contribute to our understanding of how differences in male fitness can arise in plants, with implications for their evolutionary trajectory.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A fundamental goal in ecology and evolution is to explain the factors that shape species' abundance and range limits. Evaluating the performance of early life-stages across an altitudinal gradient can be valuable for understanding what factors shape range limits and for predicting how plant species may respond to climate change. To experimentally evaluate the presence of local adaptation in a threatened palm (Euterpe edulis) at early life-stages, we reciprocally sowed seeds at two contrasting elevations. In addition, to evaluate the effect of seed predation on E. edulis seed germination and seedling establishment, seed addition experiments were conducted at three different elevations. Our results showed no evidence of local adaptation in the early life-stages for the two E. edulis populations. We observed lower germination and seedling performance of both E. edulis populations at the low-elevation site. The exclusion of seed predation increased seedling establishment across all elevations. Seed predation and dry soil conditions were the main factors that constrained seedling establishment at the upper altitudinal limit and at the lower elevation, respectively. Climate change in the study area will result in warmer and drier environmental conditions. The lack of local adaptation and the lower performance of both E. edulis populations in warm and dry conditions, combined with a higher seed predation at the upper altitudinal limit, might cause an altitudinal range contraction, increasing the vulnerability of this threatened species to climate change.
生态学和进化论的一个基本目标是解释形成物种丰度和分布范围限制的因素。评估早期生命阶段在不同海拔梯度上的表现,对于了解哪些因素影响了物种的分布范围,以及预测植物物种如何应对气候变化都很有价值。为了实验性地评估一种濒危棕榈(Euterpe edulis)在早期生命阶段是否存在局部适应性,我们在两个海拔高度截然不同的地方相互播种。此外,为了评估种子捕食对 Euterpe edulis 种子萌发和幼苗生长的影响,我们在三个不同海拔高度进行了种子添加实验。我们的研究结果表明,没有证据表明两个E. edulis种群在生命早期阶段有地方适应性。在低海拔地区,我们观察到两个 E. edulis 种群的发芽率和成苗率都较低。在所有海拔高度,排除种子捕食会提高幼苗成活率。种子捕食和干燥的土壤条件分别是限制海拔上限和海拔下限幼苗成活的主要因素。研究地区的气候变化将导致环境条件更加温暖和干燥。E.edulis种群在温暖干燥的条件下缺乏本地适应性,表现较差,再加上海拔上限的种子捕食率较高,可能会导致其海拔分布范围缩小,使这一濒危物种更容易受到气候变化的影响。
{"title":"Will climate change constrain the altitudinal range of threatened species? Experimental evidence from a biodiversity hotspot.","authors":"A C de Souza, A S Pires, K Donohue, E A de Mattos","doi":"10.1111/plb.13734","DOIUrl":"https://doi.org/10.1111/plb.13734","url":null,"abstract":"<p><p>A fundamental goal in ecology and evolution is to explain the factors that shape species' abundance and range limits. Evaluating the performance of early life-stages across an altitudinal gradient can be valuable for understanding what factors shape range limits and for predicting how plant species may respond to climate change. To experimentally evaluate the presence of local adaptation in a threatened palm (Euterpe edulis) at early life-stages, we reciprocally sowed seeds at two contrasting elevations. In addition, to evaluate the effect of seed predation on E. edulis seed germination and seedling establishment, seed addition experiments were conducted at three different elevations. Our results showed no evidence of local adaptation in the early life-stages for the two E. edulis populations. We observed lower germination and seedling performance of both E. edulis populations at the low-elevation site. The exclusion of seed predation increased seedling establishment across all elevations. Seed predation and dry soil conditions were the main factors that constrained seedling establishment at the upper altitudinal limit and at the lower elevation, respectively. Climate change in the study area will result in warmer and drier environmental conditions. The lack of local adaptation and the lower performance of both E. edulis populations in warm and dry conditions, combined with a higher seed predation at the upper altitudinal limit, might cause an altitudinal range contraction, increasing the vulnerability of this threatened species to climate change.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}