Jun Lin, Zhendong Chen, Yinying Lu, Hongyu Shi, Pei Lin
{"title":"Bruton tyrosine kinase degrader BP001 attenuates the inflammation caused by high glucose in raw264.7 cell.","authors":"Jun Lin, Zhendong Chen, Yinying Lu, Hongyu Shi, Pei Lin","doi":"10.1007/s11626-024-00919-x","DOIUrl":null,"url":null,"abstract":"<p><p>BP001 is a promising small molecule compound that has been specifically designed to target and degrade Bruton's tyrosine kinases (BTK), which is known to play a crucial role in lymphoma development. Macrophages are important immune cells in inflammation regulation and immune response. In this study, we aimed to investigate the effect of BP001 on RAW264.7 macrophage activation stimulated by a high glucose environment. Our findings revealed that treatment with BP001 significantly inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages exposed to high glucose conditions. Furthermore, we observed that BP001 treatment also down-regulated the expression of BTK in these activated macrophages. To elucidate the underlying mechanism behind these observations, we investigated the phosphorylation level of NF-κB. Our results demonstrated that BP001 treatment led to decreased phosphorylation levels of NF-κB, thereby inhibiting the level of inflammation. In addition, we also found that BP001 could restore RAW264.7 macrophages from the pro-inflammatory state to the normal phenotype and reduce the occurrence of inflammation. The regulatory function of BP001 in autoimmunity is mediated through the degradation of BTK protein, thereby attenuating macrophage activation. Additionally, BTK plays a pivotal role in transcriptional regulation by inducing NF-κB activity. Consequently, it is not difficult to understand that BP001 effectively inhibits inflammation. In conclusion, the present study provides evidence that BP001, a BTK degrader, can serve as a novel immunomodulator of inflammation induced by high glucose, making it an attractive candidate for further investigation.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"667-677"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00919-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BP001 is a promising small molecule compound that has been specifically designed to target and degrade Bruton's tyrosine kinases (BTK), which is known to play a crucial role in lymphoma development. Macrophages are important immune cells in inflammation regulation and immune response. In this study, we aimed to investigate the effect of BP001 on RAW264.7 macrophage activation stimulated by a high glucose environment. Our findings revealed that treatment with BP001 significantly inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages exposed to high glucose conditions. Furthermore, we observed that BP001 treatment also down-regulated the expression of BTK in these activated macrophages. To elucidate the underlying mechanism behind these observations, we investigated the phosphorylation level of NF-κB. Our results demonstrated that BP001 treatment led to decreased phosphorylation levels of NF-κB, thereby inhibiting the level of inflammation. In addition, we also found that BP001 could restore RAW264.7 macrophages from the pro-inflammatory state to the normal phenotype and reduce the occurrence of inflammation. The regulatory function of BP001 in autoimmunity is mediated through the degradation of BTK protein, thereby attenuating macrophage activation. Additionally, BTK plays a pivotal role in transcriptional regulation by inducing NF-κB activity. Consequently, it is not difficult to understand that BP001 effectively inhibits inflammation. In conclusion, the present study provides evidence that BP001, a BTK degrader, can serve as a novel immunomodulator of inflammation induced by high glucose, making it an attractive candidate for further investigation.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.