Larissa Alexsandra da Silva Neto Trajano, Priscyanne Barreto Siqueira, Mariana Moreno de Sousa Rodrigues, Bruno Ricardo Barreto Pires, Adenilson de Souza da Fonseca, Andre Luiz Mencalha
{"title":"Does photobiomodulation alter mitochondrial dynamics?","authors":"Larissa Alexsandra da Silva Neto Trajano, Priscyanne Barreto Siqueira, Mariana Moreno de Sousa Rodrigues, Bruno Ricardo Barreto Pires, Adenilson de Souza da Fonseca, Andre Luiz Mencalha","doi":"10.1111/php.13963","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"21-37"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.13963","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.