Simultaneous enhancement of CO2 adsorption capacity and kinetics on a novel micro-mesoporous MIL-101(Cr)-based composite: Experimental and DFT study

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2024-05-01 DOI:10.1016/j.jcou.2024.102809
Mohammad Bazmi , Alimorad Rashidi , Abbas Naderifar , Farnaz Tabarkhoon , Masood S. Alivand , Farnoush Tabarkhoon , Mehran Vashaghani Farahani , Mehdi D. Esrafili
{"title":"Simultaneous enhancement of CO2 adsorption capacity and kinetics on a novel micro-mesoporous MIL-101(Cr)-based composite: Experimental and DFT study","authors":"Mohammad Bazmi ,&nbsp;Alimorad Rashidi ,&nbsp;Abbas Naderifar ,&nbsp;Farnaz Tabarkhoon ,&nbsp;Masood S. Alivand ,&nbsp;Farnoush Tabarkhoon ,&nbsp;Mehran Vashaghani Farahani ,&nbsp;Mehdi D. Esrafili","doi":"10.1016/j.jcou.2024.102809","DOIUrl":null,"url":null,"abstract":"<div><p>MIL-101(Cr), a class of metal-organic framework, is a potential candidate for CO<sub>2</sub> capture applications because of its high capacity of adsorption and separation capability. However, the intrinsic microporous structure of this nanomaterial poses limitations on its adsorption kinetics. Techniques employed to enhance its adsorption kinetics often adversely impact its adsorption capacity at equilibrium. Herein, as a new approach, we prepared amine-functionalized FAC@MIL-101(Cr) composites with adjustable micro-mesoporous structure and tunable nitrogen content by embedding different ratios of amine-functionalized activated carbon throughout the framework of MIL-101(Cr). This led to a simultaneous improvement in both kinetics and adsorption capacity for CO<sub>2</sub>. The best adsorbent, FAC-6@MIL-101(Cr), has excellent textural properties with a high surface area (1763.1 m<sup>2</sup>.g<sup>−1</sup>), great pore volume (1.29 cm<sup>3</sup>.g<sup>−1</sup>), and suitable nitrogen content (4.7 wt%). The adsorption analysis revealed that the modification of MIL-101(Cr) improved its CO<sub>2</sub> adsorption capacity from 3.21 to 5.27 mmol/g under standard conditions of 1 bar and 25 °C. Furthermore, the FAC-6@MIL-101(Cr) adsorbent demonstrated fast CO<sub>2</sub> adsorption kinetics (three times more relative to the pure MIL-101(Cr)), high CO<sub>2</sub>/N<sub>2</sub> selectivity, and remarkable cyclic stability. The results confirmed that hybridization enhanced the polarizability of FAC@MIL-101(Cr) samples, causing more robust CO<sub>2</sub>-adsorbent surface interactions. Simultaneously, the existence of mesopores in the structure facilitated the transport of CO<sub>2</sub> into the interior pores, resulting in a more efficient contact of CO<sub>2</sub> molecules with all of the amine sites and a faster adsorption rate as well as more efficient regeneration. According to density functional theory (DFT) calculations, hybridization process induces significant changes in composites’ electronic structure, enhancing their capacity to interact with CO<sub>2</sub> molecules more effectively. On the other hand, DFT calculations confirm that N<sub>2</sub> molecule is less activated on the FAC@MIL-101(Cr) as evidenced by calculated small adsorption energy and charge-transfer values.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001446/pdfft?md5=b80a6444410e8d8894d438f103363ad5&pid=1-s2.0-S2212982024001446-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024001446","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MIL-101(Cr), a class of metal-organic framework, is a potential candidate for CO2 capture applications because of its high capacity of adsorption and separation capability. However, the intrinsic microporous structure of this nanomaterial poses limitations on its adsorption kinetics. Techniques employed to enhance its adsorption kinetics often adversely impact its adsorption capacity at equilibrium. Herein, as a new approach, we prepared amine-functionalized FAC@MIL-101(Cr) composites with adjustable micro-mesoporous structure and tunable nitrogen content by embedding different ratios of amine-functionalized activated carbon throughout the framework of MIL-101(Cr). This led to a simultaneous improvement in both kinetics and adsorption capacity for CO2. The best adsorbent, FAC-6@MIL-101(Cr), has excellent textural properties with a high surface area (1763.1 m2.g−1), great pore volume (1.29 cm3.g−1), and suitable nitrogen content (4.7 wt%). The adsorption analysis revealed that the modification of MIL-101(Cr) improved its CO2 adsorption capacity from 3.21 to 5.27 mmol/g under standard conditions of 1 bar and 25 °C. Furthermore, the FAC-6@MIL-101(Cr) adsorbent demonstrated fast CO2 adsorption kinetics (three times more relative to the pure MIL-101(Cr)), high CO2/N2 selectivity, and remarkable cyclic stability. The results confirmed that hybridization enhanced the polarizability of FAC@MIL-101(Cr) samples, causing more robust CO2-adsorbent surface interactions. Simultaneously, the existence of mesopores in the structure facilitated the transport of CO2 into the interior pores, resulting in a more efficient contact of CO2 molecules with all of the amine sites and a faster adsorption rate as well as more efficient regeneration. According to density functional theory (DFT) calculations, hybridization process induces significant changes in composites’ electronic structure, enhancing their capacity to interact with CO2 molecules more effectively. On the other hand, DFT calculations confirm that N2 molecule is less activated on the FAC@MIL-101(Cr) as evidenced by calculated small adsorption energy and charge-transfer values.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型微多孔 MIL-101(Cr)基复合材料同时增强二氧化碳吸附容量和动力学:实验和 DFT 研究
MIL-101(Cr)是一类金属有机框架,具有很强的吸附能力和分离能力,是二氧化碳捕集应用的潜在候选材料。然而,这种纳米材料固有的微孔结构限制了其吸附动力学。为提高其吸附动力学而采用的技术往往会对其平衡吸附能力产生不利影响。在此,作为一种新方法,我们通过在整个 MIL-101(Cr) 框架中嵌入不同比例的胺功能化活性炭,制备了具有可调微孔结构和可调氮含量的胺功能化 FAC@MIL-101(Cr)复合材料。这同时提高了动力学性能和对二氧化碳的吸附能力。最佳吸附剂 FAC-6@MIL-101(Cr)具有优异的质地特性,比表面积高(1763.1 m2.g-1),孔隙率大(1.29 cm3.g-1),氮含量合适(4.7 wt%)。吸附分析表明,在 1 bar 和 25 °C 的标准条件下,对 MIL-101(Cr)的改性将其二氧化碳吸附容量从 3.21 mmol/g 提高到了 5.27 mmol/g。此外,FAC-6@MIL-101(Cr) 吸附剂表现出快速的二氧化碳吸附动力学(是纯 MIL-101(Cr) 的三倍)、高 CO2/N2 选择性和显著的循环稳定性。结果证实,杂化增强了 FAC@MIL-101(Cr)样品的极化性,使 CO2-吸附剂表面的相互作用更强。同时,中孔结构的存在促进了 CO2 向内部孔隙的传输,使 CO2 分子与所有胺位点更有效地接触,吸附速率更快,再生效率更高。根据密度泛函理论(DFT)计算,杂化过程会导致复合材料的电子结构发生显著变化,从而增强其与二氧化碳分子更有效地相互作用的能力。另一方面,密度泛函理论计算证实,N2 分子在 FAC@MIL-101(Cr)上的活化程度较低,这一点可以从计算出的较小吸附能和电荷转移值得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Machine learning-guided optimization of coarse aggregate mix proportion based on CO2 intensity index CO2 derived ABA triblock all-polycarbonate thermoplastic elastomer with ultra-high elastic recovery Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst Electron traps as a valuable criterium of iron oxide catalysts' performance in CO2 hydrogenation Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1