Clara Leparoux , Riccardo Bonalli , Bruno Hérissé , Frédéric Jean
{"title":"Statistical linearization for robust motion planning","authors":"Clara Leparoux , Riccardo Bonalli , Bruno Hérissé , Frédéric Jean","doi":"10.1016/j.sysconle.2024.105825","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"189 ","pages":"Article 105825"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124001130","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.