{"title":"Foreword to the Special section on Advances in Radar Imaging","authors":"Shannon D. Blunt;Martin Vossiek;Fabiola Colone","doi":"10.1109/TRS.2024.3396968","DOIUrl":null,"url":null,"abstract":"The utility of radar imaging \n<xref>[1]</xref>\n, \n<xref>[2]</xref>\n, \n<xref>[3]</xref>\n, \n<xref>[4]</xref>\n, \n<xref>[5]</xref>\n, \n<xref>[6]</xref>\n, \n<xref>[7]</xref>\n, \n<xref>[8]</xref>\n, \n<xref>[9]</xref>\n spans a variety of different use-cases including scientific remote sensing, medical diagnostic tools, high-resolution security screening, automotive sensing, weather radar, and numerous defense applications. For example, synthetic aperture radar (SAR) permits long-range imaging intelligence, surveillance, and reconnaissance (ISR) in all-weather environments and enables ground-penetrating imaging for archeology and glaciology. Micro-Doppler features derived by short-time Fourier transform (STFT) imaging facilitate the assessment of cyclic features such as spinning rotors on aircraft and providing a mechanism whereby sign language can be made machine-readable. Imaging derived from polarimetric weather radars can discriminate the type of precipitation as a function of geographic location. Automotive radar research likewise explores the imaging capabilities to aid in collision avoidance. Finally, inverse SAR (ISAR) leverages the motion of an illuminated object to construct imagery for identification and discrimination. Following another strong response, this third special section of the recently launched IEEE Transactions on Radar Systems comprises eight selected papers that explore different aspects of imaging across the radar research community.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"482-483"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535991","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10535991/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utility of radar imaging
[1]
,
[2]
,
[3]
,
[4]
,
[5]
,
[6]
,
[7]
,
[8]
,
[9]
spans a variety of different use-cases including scientific remote sensing, medical diagnostic tools, high-resolution security screening, automotive sensing, weather radar, and numerous defense applications. For example, synthetic aperture radar (SAR) permits long-range imaging intelligence, surveillance, and reconnaissance (ISR) in all-weather environments and enables ground-penetrating imaging for archeology and glaciology. Micro-Doppler features derived by short-time Fourier transform (STFT) imaging facilitate the assessment of cyclic features such as spinning rotors on aircraft and providing a mechanism whereby sign language can be made machine-readable. Imaging derived from polarimetric weather radars can discriminate the type of precipitation as a function of geographic location. Automotive radar research likewise explores the imaging capabilities to aid in collision avoidance. Finally, inverse SAR (ISAR) leverages the motion of an illuminated object to construct imagery for identification and discrimination. Following another strong response, this third special section of the recently launched IEEE Transactions on Radar Systems comprises eight selected papers that explore different aspects of imaging across the radar research community.