Theoretical study on the differences in donor-acceptor interaction and electron transition mechanism in Pd(II) and Pt(II) complexes

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-05-21 DOI:10.1002/qua.27418
Yu Chang, Xiao-Chun Hang, Cong Zhang
{"title":"Theoretical study on the differences in donor-acceptor interaction and electron transition mechanism in Pd(II) and Pt(II) complexes","authors":"Yu Chang,&nbsp;Xiao-Chun Hang,&nbsp;Cong Zhang","doi":"10.1002/qua.27418","DOIUrl":null,"url":null,"abstract":"<p>The relativistic effect enhances spin-orbit coupling (SOC), making metal complexes potential candidates for phosphorescent OLED emitters. However, the relativistic effect profoundly influences the donor and acceptor interactions (D-A), resulting in unique electron transition processes. By stabilizing the s orbitals and destabilizing the d orbitals of the center metal atom, the relativistic effect enhances donation, back donation, and the trans effect in PtN1N more than in PdN1N. Particularly, the back donation in PtN1N is approximately four times greater than that in PdN1N, contributing to the greater stability and rigidity in PtN1N. Furthermore, the relativistic effect enhances the SOC and reduces the excitation energy and stabilizes the excited states of PtN1N. Consequently, the radiative decay rate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mi>p</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{k}}_{\\mathrm{p}} $$</annotation>\n </semantics></math> and non-radiative rate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mi>nr</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{k}}_{\\mathrm{nr}} $$</annotation>\n </semantics></math> are accelerated simultaneously. The reverse intersystem crossing rate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mtext>RISC</mtext>\n </msub>\n <mfenced>\n <mrow>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ {\\mathrm{k}}_{\\mathrm{RISC}}\\left({\\mathrm{T}}_3\\to {\\mathrm{S}}_1\\right) $$</annotation>\n </semantics></math> in PdN1N is accelerated by high temperature, which is responsible for thermally activated delayed fluorescence (TADF).</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27418","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The relativistic effect enhances spin-orbit coupling (SOC), making metal complexes potential candidates for phosphorescent OLED emitters. However, the relativistic effect profoundly influences the donor and acceptor interactions (D-A), resulting in unique electron transition processes. By stabilizing the s orbitals and destabilizing the d orbitals of the center metal atom, the relativistic effect enhances donation, back donation, and the trans effect in PtN1N more than in PdN1N. Particularly, the back donation in PtN1N is approximately four times greater than that in PdN1N, contributing to the greater stability and rigidity in PtN1N. Furthermore, the relativistic effect enhances the SOC and reduces the excitation energy and stabilizes the excited states of PtN1N. Consequently, the radiative decay rate k p $$ {\mathrm{k}}_{\mathrm{p}} $$ and non-radiative rate k nr $$ {\mathrm{k}}_{\mathrm{nr}} $$ are accelerated simultaneously. The reverse intersystem crossing rate k RISC T 3 S 1 $$ {\mathrm{k}}_{\mathrm{RISC}}\left({\mathrm{T}}_3\to {\mathrm{S}}_1\right) $$ in PdN1N is accelerated by high temperature, which is responsible for thermally activated delayed fluorescence (TADF).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于钯(II)和铂(II)配合物中供体-受体相互作用差异和电子转变机制的理论研究
相对论效应增强了自旋轨道耦合(SOC),使金属复合物成为有机发光二极管磷光发光体的潜在候选物质。然而,相对论效应深刻地影响了供体和受体的相互作用(D-A),导致了独特的电子转变过程。通过稳定中心金属原子的 s 轨道和破坏其 d 轨道的稳定性,相对论效应在 PtN1N 中比在 PdN1N 中更能增强捐献、反向捐献和反式效应。特别是,PtN1N 中的反向捐赠大约是 PdN1N 中的四倍,这使得 PtN1N 具有更高的稳定性和刚性。此外,相对论效应增强了 PtN1N 的 SOC,降低了激发能量并稳定了激发态。因此,辐射衰变速率 k p $$ {\mathrm{k}}_{\mathrm{p}}$$ 和非辐射衰变率 k nr $$ {\mathrm{k}}_{\mathrm{nr}}$$ 同时加速。PdN1N 中的反向系统间穿越速率 k RISC T 3 → S 1 $$ {\mathrm{k}}_{mathrm\{RISC}} 左({\mathrm{T}}_3\to {\mathrm{S}}_1\right) $$ 在高温下被加速,这就是热激活延迟荧光(TADF)的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Issue Information Ultralarge Hyperpolarizability, Novel Ladder-Type Heteroarenes Electro-Optic Chromophores: Influence of Fused Heterocyclic π-System and Push–Pull Effect on Nonlinear Optical Properties The Interaction Between Fluorinated Additives and Imidazolyl Ionic Liquid Electrolytes in Lithium Metal Batteries: A First-Principles Study Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model ISI Energy Change Due to an Edge Deletion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1