Zhuoyuan Ma, Shu Tao, Lichao Gao, Yi Cui, Qinghe Jing, Shida Chen, Wei He, Jie Guo, Lianfu Hai
{"title":"Detailed Characterization of Microscopic Pore Structure in Low-Rank Coal: A Case Study of Zhalainuoer Coalfield","authors":"Zhuoyuan Ma, Shu Tao, Lichao Gao, Yi Cui, Qinghe Jing, Shida Chen, Wei He, Jie Guo, Lianfu Hai","doi":"10.1007/s11053-024-10355-z","DOIUrl":null,"url":null,"abstract":"<p>In China, significant progress has been made in the exploration and development of coalbed methane (CBM) in medium- to high-rank coals. However, the exploration and development potential of CBM in low-rank coals in the Zhalainuoer coalfield is unknown. In this study, various testing methods were utilized, including low temperature N<sub>2</sub>/CO<sub>2</sub> adsorption, field emission scanning electron microscopy, and nuclear magnetic resonance, to investigate the pore structure characteristics of low-rank coals in the Zhalainuoer coalfield, so as to further evaluate the occurrence space of CBM therein. The results revealed that the prevalent pore types in the low-rank coals were “ink bottle” shaped pores and semi-closed pores, and micropores provide the main specific surface area (SSA) and total pore volume (TPV). Moreover, there is no significant correlation between vitrinite content and fractal dimension, while pore SSA and TPV are correlated positively with D<sub>1</sub> but negatively with D<sub>2</sub>. The coalification degree significantly impacts the pore characteristics of the coal reservoirs. With coalification degree increasing, the SSA and TPV of micropores and transition pores generally exhibited a pattern of initially decreasing and then increasing. These research findings establish a theoretical foundation for the exploration and development of CBM in the Zhalainuoer coalfield.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"48 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10355-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In China, significant progress has been made in the exploration and development of coalbed methane (CBM) in medium- to high-rank coals. However, the exploration and development potential of CBM in low-rank coals in the Zhalainuoer coalfield is unknown. In this study, various testing methods were utilized, including low temperature N2/CO2 adsorption, field emission scanning electron microscopy, and nuclear magnetic resonance, to investigate the pore structure characteristics of low-rank coals in the Zhalainuoer coalfield, so as to further evaluate the occurrence space of CBM therein. The results revealed that the prevalent pore types in the low-rank coals were “ink bottle” shaped pores and semi-closed pores, and micropores provide the main specific surface area (SSA) and total pore volume (TPV). Moreover, there is no significant correlation between vitrinite content and fractal dimension, while pore SSA and TPV are correlated positively with D1 but negatively with D2. The coalification degree significantly impacts the pore characteristics of the coal reservoirs. With coalification degree increasing, the SSA and TPV of micropores and transition pores generally exhibited a pattern of initially decreasing and then increasing. These research findings establish a theoretical foundation for the exploration and development of CBM in the Zhalainuoer coalfield.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.