{"title":"CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data.","authors":"Wei Liu, Zhijie Teng, Zejun Li, Jing Chen","doi":"10.1007/s12539-024-00633-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulatory network (GRN) inference based on single-cell RNA sequencing data (scRNAseq) plays a crucial role in understanding the regulatory mechanisms between genes. Various computational methods have been employed for GRN inference, but their performance in terms of network accuracy and model generalization is not satisfactory, and their poor performance is caused by high-dimensional data and network sparsity. In this paper, we propose a self-supervised method for gene regulatory network inference using single-cell RNA sequencing data (CVGAE). CVGAE uses graph neural network for inductive representation learning, which merges gene expression data and observed topology into a low-dimensional vector space. The well-trained vectors will be used to calculate mathematical distance of each gene, and further predict interactions between genes. In overall framework, FastICA is implemented to relief computational complexity caused by high dimensional data, and CVGAE adopts multi-stacked GraphSAGE layers as an encoder and an improved decoder to overcome network sparsity. CVGAE is evaluated on several single cell datasets containing four related ground-truth networks, and the result shows that CVGAE achieve better performance than comparative methods. To validate learning and generalization capabilities, CVGAE is applied in few-shot environment by change the ratio of train set and test set. In condition of few-shot, CVGAE obtains comparable or superior performance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"990-1004"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00633-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene regulatory network (GRN) inference based on single-cell RNA sequencing data (scRNAseq) plays a crucial role in understanding the regulatory mechanisms between genes. Various computational methods have been employed for GRN inference, but their performance in terms of network accuracy and model generalization is not satisfactory, and their poor performance is caused by high-dimensional data and network sparsity. In this paper, we propose a self-supervised method for gene regulatory network inference using single-cell RNA sequencing data (CVGAE). CVGAE uses graph neural network for inductive representation learning, which merges gene expression data and observed topology into a low-dimensional vector space. The well-trained vectors will be used to calculate mathematical distance of each gene, and further predict interactions between genes. In overall framework, FastICA is implemented to relief computational complexity caused by high dimensional data, and CVGAE adopts multi-stacked GraphSAGE layers as an encoder and an improved decoder to overcome network sparsity. CVGAE is evaluated on several single cell datasets containing four related ground-truth networks, and the result shows that CVGAE achieve better performance than comparative methods. To validate learning and generalization capabilities, CVGAE is applied in few-shot environment by change the ratio of train set and test set. In condition of few-shot, CVGAE obtains comparable or superior performance.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.