Desiderata for Normative Models of Synaptic Plasticity

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2024-06-07 DOI:10.1162/neco_a_01671
Colin Bredenberg;Cristina Savin
{"title":"Desiderata for Normative Models of Synaptic Plasticity","authors":"Colin Bredenberg;Cristina Savin","doi":"10.1162/neco_a_01671","DOIUrl":null,"url":null,"abstract":"Normative models of synaptic plasticity use computational rationales to arrive at predictions of behavioral and network-level adaptive phenomena. In recent years, there has been an explosion of theoretical work in this realm, but experimental confirmation remains limited. In this review, we organize work on normative plasticity models in terms of a set of desiderata that, when satisfied, are designed to ensure that a given model demonstrates a clear link between plasticity and adaptive behavior, is consistent with known biological evidence about neural plasticity and yields specific testable predictions. As a prototype, we include a detailed analysis of the REINFORCE algorithm. We also discuss how new models have begun to improve on the identified criteria and suggest avenues for further development. Overall, we provide a conceptual guide to help develop neural learning theories that are precise, powerful, and experimentally testable.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 7","pages":"1245-1285"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10661278/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Normative models of synaptic plasticity use computational rationales to arrive at predictions of behavioral and network-level adaptive phenomena. In recent years, there has been an explosion of theoretical work in this realm, but experimental confirmation remains limited. In this review, we organize work on normative plasticity models in terms of a set of desiderata that, when satisfied, are designed to ensure that a given model demonstrates a clear link between plasticity and adaptive behavior, is consistent with known biological evidence about neural plasticity and yields specific testable predictions. As a prototype, we include a detailed analysis of the REINFORCE algorithm. We also discuss how new models have begun to improve on the identified criteria and suggest avenues for further development. Overall, we provide a conceptual guide to help develop neural learning theories that are precise, powerful, and experimentally testable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突触可塑性规范模型的基本要求
突触可塑性的规范模型利用计算原理来预测行为和网络层面的适应现象。近年来,这一领域的理论研究激增,但实验证实仍然有限。在这篇综述中,我们将从一系列必要条件的角度对规范可塑性模型的研究工作进行梳理,这些必要条件一旦得到满足,就能确保特定模型能够证明可塑性与适应性行为之间的明确联系,与神经可塑性的已知生物学证据相一致,并产生具体的可检验预测。作为原型,我们对 REINFORCE 算法进行了详细分析。我们还讨论了新模型如何开始改进已确定的标准,并提出了进一步发展的途径。总之,我们提供了一个概念指南,以帮助开发精确、强大和可实验检验的神经学习理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Realizing Synthetic Active Inference Agents, Part II: Variational Message Updates Bounded Rational Decision Networks With Belief Propagation Computation With Sequences of Assemblies in a Model of the Brain Relating Human Error–Based Learning to Modern Deep RL Algorithms Selective Inference for Change Point Detection by Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1