Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2025-01-09 DOI:10.1162/neco_a_01733
Zhichao Zhu, Yang Qi, Wenlian Lu, Zhigang Wang, Lu Cao, Jianfeng Feng
{"title":"Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks.","authors":"Zhichao Zhu, Yang Qi, Wenlian Lu, Zhigang Wang, Lu Cao, Jianfeng Feng","doi":"10.1162/neco_a_01733","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes. Here, we introduce a theory of decision making in SNNs by untangling the interplay between signal and noise. Under this theory, we introduce a new learning objective that trains an SNN not only to make the correct decisions but also to shape its confidence. Numerical experiments demonstrate that SNNs trained in this way exhibit improved confidence expression, reduced trial-to-trial variability, and shorter latency to reach the desired accuracy. We then introduce a stopping policy that can stop inference in a way that further enhances the time efficiency of SNNs. The stopping time can serve as an indicator to whether a decision is correct, akin to the reaction time in animal behavior experiments. By integrating stochasticity into decision making, this study opens up new possibilities to explore the capabilities of SNNs and advance SNNs and their applications in complex decision-making scenarios where model performance is limited.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-41"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01733","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes. Here, we introduce a theory of decision making in SNNs by untangling the interplay between signal and noise. Under this theory, we introduce a new learning objective that trains an SNN not only to make the correct decisions but also to shape its confidence. Numerical experiments demonstrate that SNNs trained in this way exhibit improved confidence expression, reduced trial-to-trial variability, and shorter latency to reach the desired accuracy. We then introduce a stopping policy that can stop inference in a way that further enhances the time efficiency of SNNs. The stopping time can serve as an indicator to whether a decision is correct, akin to the reaction time in animal behavior experiments. By integrating stochasticity into decision making, this study opens up new possibilities to explore the capabilities of SNNs and advance SNNs and their applications in complex decision-making scenarios where model performance is limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Gradual Domain Adaptation via Normalizing Flows. Improving Recall Accuracy in Sparse Associative Memories That Use Neurogenesis. Replay as a Basis for Backpropagation Through Time in the Brain. Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks. Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1