Tomás V Waichman, M L Vercesi, Ariel A Berardino, Maximiliano S Beckel, Damiana Giacomini, Natalí B Rasetto, Magalí Herrero, Daniela J Di Bella, Paola Arlotta, Alejandro F Schinder, Ariel Chernomoretz
{"title":"scX: a user-friendly tool for scRNAseq exploration.","authors":"Tomás V Waichman, M L Vercesi, Ariel A Berardino, Maximiliano S Beckel, Damiana Giacomini, Natalí B Rasetto, Magalí Herrero, Daniela J Di Bella, Paola Arlotta, Alejandro F Schinder, Ariel Chernomoretz","doi":"10.1093/bioadv/vbae062","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data.</p><p><strong>Results: </strong>In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.</p><p><strong>Availability and implementation: </strong>Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data.
Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis.
Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.