Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-05-01 DOI:10.1016/S1872-2067(24)60038-0
Adel Al-Salihy , Ce Liang , Abdulwahab Salah , Abdel-Basit Al-Odayni , Ziang Lu , Mengxin Chen , Qianqian Liu , Ping Xu
{"title":"Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting","authors":"Adel Al-Salihy ,&nbsp;Ce Liang ,&nbsp;Abdulwahab Salah ,&nbsp;Abdel-Basit Al-Odayni ,&nbsp;Ziang Lu ,&nbsp;Mengxin Chen ,&nbsp;Qianqian Liu ,&nbsp;Ping Xu","doi":"10.1016/S1872-2067(24)60038-0","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of sustainable hydrogen production technology through water splitting necessitates the rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bi-functional electrocatalysts. In this context, we initially synthesized and empirically evaluated ultralow Ru-doped NiMoO<sub>4</sub>@Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> core-shell nanostructures on nickel foam (Ru-NiMoO<sub>4</sub>@Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/NF). The hydrous NiMoO<sub>4</sub> nanopillars were hydrothermally grown on NF, followed by successive RuCl<sub>3</sub> etching and subsequent phosphorylation processes, leading to the final Ru-NiMoO<sub>4</sub>@Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/NF. The catalyst demonstrated impressive HER overpotential values of −14.8 and −57.1 mV at 10 and 100 mA cm<sup>−2</sup>, respectively, with a Tafel slope of 35.8 mV dec<sup>−1</sup>. For OER at 100 mA cm<sup>−2</sup>, an overpotential of 259.7 mV was observed, with a Tafel slope of 21.6 mV dec<sup>−1</sup>. The cell voltage required for overall water splitting was 1.43 V at 10 mA cm<sup>−2</sup> and 1.68 V at 100 mA cm<sup>−2</sup>. Moreover, the catalyst exhibited superior stability for 150 h, emphasizing its practical utility for long-term applications. Subsequent density functional theory calculations aligned with these empirical findings, indicating a low water dissociation energy barrier (Δ<em>G</em><sub>b</sub> = 0.46 eV), near-zero free adsorption energy for HER (Δ<em>G</em><sub>*H</sub> = 0.02 eV), and suitable free adsorption energy for OER (Δ<em>G</em><sub>*OOH</sub> − Δ<em>G</em><sub>*OH</sub> = 2.74 eV), alongside a high density of states near the Fermi level. These results, informed by both experimental evaluation and theoretical validation, highlight the potential of Ru-NiMoO<sub>4</sub>@Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/NF as a high-performance catalyst for water splitting, setting a solid foundation for advancements in sustainable energy technologies.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"60 ","pages":"Pages 360-375"},"PeriodicalIF":15.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600380","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of sustainable hydrogen production technology through water splitting necessitates the rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bi-functional electrocatalysts. In this context, we initially synthesized and empirically evaluated ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures on nickel foam (Ru-NiMoO4@Ni3(PO4)2/NF). The hydrous NiMoO4 nanopillars were hydrothermally grown on NF, followed by successive RuCl3 etching and subsequent phosphorylation processes, leading to the final Ru-NiMoO4@Ni3(PO4)2/NF. The catalyst demonstrated impressive HER overpotential values of −14.8 and −57.1 mV at 10 and 100 mA cm−2, respectively, with a Tafel slope of 35.8 mV dec−1. For OER at 100 mA cm−2, an overpotential of 259.7 mV was observed, with a Tafel slope of 21.6 mV dec−1. The cell voltage required for overall water splitting was 1.43 V at 10 mA cm−2 and 1.68 V at 100 mA cm−2. Moreover, the catalyst exhibited superior stability for 150 h, emphasizing its practical utility for long-term applications. Subsequent density functional theory calculations aligned with these empirical findings, indicating a low water dissociation energy barrier (ΔGb = 0.46 eV), near-zero free adsorption energy for HER (ΔG*H = 0.02 eV), and suitable free adsorption energy for OER (ΔG*OOH − ΔG*OH = 2.74 eV), alongside a high density of states near the Fermi level. These results, informed by both experimental evaluation and theoretical validation, highlight the potential of Ru-NiMoO4@Ni3(PO4)2/NF as a high-performance catalyst for water splitting, setting a solid foundation for advancements in sustainable energy technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低 Ru 掺杂的 NiMoO4@Ni3(PO4)2 核壳纳米结构可提高整体水分离性能
通过水分离实现可持续制氢技术的潜力要求合理设计氧进化反应(OER)和氢进化反应(HER)双功能电催化剂。在此背景下,我们在泡沫镍(Ru-NiMoO4@Ni3(PO4)2/NF)上初步合成了超低掺杂 Ru 的 NiMoO4@Ni3(PO4)2 核壳纳米结构,并对其进行了经验评估。水合 NiMoO4 纳米柱通过水热法在 NF 上生长,然后经过连续的 RuCl3 蚀刻和随后的磷酸化过程,最终得到 Ru-NiMoO4@Ni3(PO4)2/NF。在 10 mA cm-2 和 100 mA cm-2 条件下,催化剂的 HER 过电位值分别为 -14.8 mV 和 -57.1 mV,Tafel 斜率为 35.8 mV dec-1。对于 100 mA cm-2 的 OER,观察到的过电位为 259.7 mV,Tafel 斜坡为 21.6 mV dec-1。在 10 mA cm-2 和 100 mA cm-2 条件下,整体水分离所需的电池电压分别为 1.43 V 和 1.68 V。此外,该催化剂在 150 小时内表现出卓越的稳定性,强调了其在长期应用中的实用性。随后的密度泛函理论计算与这些经验性发现相吻合,表明水解离能垒较低(ΔGb = 0.46 eV),HER 的自由吸附能接近于零(ΔG*H = 0.02 eV),OER 的自由吸附能合适(ΔG*OOH - ΔG*OH = 2.74 eV),同时费米级附近的态密度较高。通过实验评估和理论验证得出的这些结果凸显了 Ru-NiMoO4@Ni3(PO4)2/NF 作为高性能水分离催化剂的潜力,为可持续能源技术的发展奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO2 and methanol over ceria catalysts Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1