{"title":"Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction","authors":"","doi":"10.1016/S1872-2067(24)60108-7","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by natural photosynthesis, fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues. Herein, NH<sub>2</sub>-MIL-125(Ti)/Zn<sub>0.5</sub>Cd<sub>0.5</sub>S/NiS (NMT/ZCS/NiS) S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through <em>in-situ</em> solvothermal strategy. Notably, the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H<sub>2</sub> evolution (PHE) rate of about 14876.7 μmol h<sup>−1</sup> g<sup>−1</sup> with apparent quantum yield of 24.2% at 420 nm, which is significantly higher than that of recently reported MOFs-based photocatalysts. The interfacial coordination bonds (Zn–N, Cd–N, and Ni–N bonds) accelerate the separation and transfer of photogenerated charges, and the NiS as cocatalyst can provide more catalytically active sites, which synergistically improve the photocatalytic performance. Moreover, theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption. Photoassisted Kelvin probe force microscopy, <em>in-situ</em> irradiation X-ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism. This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601087","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by natural photosynthesis, fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues. Herein, NH2-MIL-125(Ti)/Zn0.5Cd0.5S/NiS (NMT/ZCS/NiS) S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy. Notably, the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H2 evolution (PHE) rate of about 14876.7 μmol h−1 g−1 with apparent quantum yield of 24.2% at 420 nm, which is significantly higher than that of recently reported MOFs-based photocatalysts. The interfacial coordination bonds (Zn–N, Cd–N, and Ni–N bonds) accelerate the separation and transfer of photogenerated charges, and the NiS as cocatalyst can provide more catalytically active sites, which synergistically improve the photocatalytic performance. Moreover, theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption. Photoassisted Kelvin probe force microscopy, in-situ irradiation X-ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism. This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.