{"title":"Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model","authors":"Olha Bodnar , Taras Bodnar","doi":"10.1016/j.csda.2024.107990","DOIUrl":null,"url":null,"abstract":"<div><p>Bayesian inference procedures for the parameters of the multivariate random effects model are derived under the assumption of an elliptically contoured distribution when the Berger and Bernardo reference and the Jeffreys priors are assigned to the model parameters. A new numerical algorithm for drawing samples from the posterior distribution is developed, which is based on the hybrid Gibbs sampler. The new approach is compared to the two Metropolis-Hastings algorithms previously derived in the literature via an extensive simulation study. The findings are applied to a Bayesian multivariate meta-analysis, conducted using the results of ten studies on the effectiveness of a treatment for hypertension. The analysis investigates the treatment effects on systolic and diastolic blood pressure. The second empirical illustration deals with measurement data from the CCAUV.V-K1 key comparison, aiming to compare measurement results of sinusoidal linear accelerometers at four frequencies.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"197 ","pages":"Article 107990"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000744/pdfft?md5=f03345bd15314ef0a3bf57ae49fa38db&pid=1-s2.0-S0167947324000744-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000744","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian inference procedures for the parameters of the multivariate random effects model are derived under the assumption of an elliptically contoured distribution when the Berger and Bernardo reference and the Jeffreys priors are assigned to the model parameters. A new numerical algorithm for drawing samples from the posterior distribution is developed, which is based on the hybrid Gibbs sampler. The new approach is compared to the two Metropolis-Hastings algorithms previously derived in the literature via an extensive simulation study. The findings are applied to a Bayesian multivariate meta-analysis, conducted using the results of ten studies on the effectiveness of a treatment for hypertension. The analysis investigates the treatment effects on systolic and diastolic blood pressure. The second empirical illustration deals with measurement data from the CCAUV.V-K1 key comparison, aiming to compare measurement results of sinusoidal linear accelerometers at four frequencies.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]