Nonnegative iterative reweighted method for sparse linear complementarity problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-21 DOI:10.1016/j.apnum.2024.05.015
Xinlin Hu , Qisheng Zheng , Kai Zhang
{"title":"Nonnegative iterative reweighted method for sparse linear complementarity problem","authors":"Xinlin Hu ,&nbsp;Qisheng Zheng ,&nbsp;Kai Zhang","doi":"10.1016/j.apnum.2024.05.015","DOIUrl":null,"url":null,"abstract":"<div><p>Solution of sparse linear complementarity problem (LCP) has been widely discussed in many applications. In this paper, we consider the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> regularization problem with nonnegative constraint for sparse LCP, and propose algorithms based on the iterative reweighted method to approach a sparse solution of the LCP, and then show the convergence to the stationary point of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> regularization problem. Numerical results on simulated data exhibit an excellent performance of the proposed algorithms on approaching a sparse solution of the LCP. Finally, we apply this method to the frictional and frictionless contact problems. The numerical experiments demonstrate that the contact problems can be efficiently solved by the proposed algorithm.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Solution of sparse linear complementarity problem (LCP) has been widely discussed in many applications. In this paper, we consider the p regularization problem with nonnegative constraint for sparse LCP, and propose algorithms based on the iterative reweighted method to approach a sparse solution of the LCP, and then show the convergence to the stationary point of p regularization problem. Numerical results on simulated data exhibit an excellent performance of the proposed algorithms on approaching a sparse solution of the LCP. Finally, we apply this method to the frictional and frictionless contact problems. The numerical experiments demonstrate that the contact problems can be efficiently solved by the proposed algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏线性互补问题的非负迭代加权法
稀疏线性互补问题(LCP)的求解已在许多应用中得到广泛讨论。本文考虑了稀疏线性互补问题中带有非负约束的 ℓp 正则化问题,提出了基于迭代加权法的算法来逼近线性互补问题的稀疏解,并证明了 ℓp 正则化问题对静止点的收敛性。模拟数据的数值结果表明,提出的算法在逼近 LCP 稀疏解方面表现出色。最后,我们将该方法应用于摩擦和无摩擦接触问题。数值实验证明,所提出的算法可以高效地解决接触问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1