{"title":"Metasurface Approach to Generate Homogeneous B1+ Field for High-Field and Ultra-High-Field MRI","authors":"Chen Xue;Guanglei Zhou;Alex M. H. Wong","doi":"10.1109/JERM.2024.3381333","DOIUrl":null,"url":null,"abstract":"A novel electromagnetic excitation method – the Huygens’ cylinder – is proposed to improve the B\n<sub>1</sub>\n<sup>+</sup>\n field homogeneity of the high-field (HF) and ultra-high field (UHF) magnetic resonance imaging (MRI). Based on the concept of the Huygens’ box, we calculate the currents on a cylindrical boundary that can synthesize an arbitrary electromagnetic wave inside the enclosed region. Specifically, we excite a right-handed circularly polarized (B\n<sub>1</sub>\n<sup>+</sup>\n) travelling wave with high mode purity inside the Huygens’ cylinder coil. The simulated B\n<sub>1</sub>\n<sup>+</sup>\n field obtained from several 3T and 7T MR scenarios are reported and compared with birdcage coils. In the unloaded scenarios, the Huygens’ cylinder achieves superior B\n<sub>1</sub>\n<sup>+</sup>\n-field homogeneity over both the sagittal and axial plane compared to the birdcage coil for both 3T and 7T MRI. In the loaded scenarios, the Huygens’ cylinder achieves superior B\n<sub>1</sub>\n<sup>+</sup>\n-field homogeneity over the sagittal plane and comparable B\n<sub>1</sub>\n<sup>+</sup>\n-field homogeneity over the axial plane for both 3T and 7T MRI compared to the birdcage coil. Moreover, the 7T Huygens’ cylinder can generate a uniform field over a much larger region, enabling the imaging of a large part of the human body. The Huygens’ cylinder greatly improves the homogeneity of B\n<sub>1</sub>\n<sup>+</sup>\n field and is free from the dielectric resonance limitation suffered by conventional RF coils. It has strong potential as future RF coils in HF and UHF MR systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10487966/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel electromagnetic excitation method – the Huygens’ cylinder – is proposed to improve the B
1+
field homogeneity of the high-field (HF) and ultra-high field (UHF) magnetic resonance imaging (MRI). Based on the concept of the Huygens’ box, we calculate the currents on a cylindrical boundary that can synthesize an arbitrary electromagnetic wave inside the enclosed region. Specifically, we excite a right-handed circularly polarized (B
1+
) travelling wave with high mode purity inside the Huygens’ cylinder coil. The simulated B
1+
field obtained from several 3T and 7T MR scenarios are reported and compared with birdcage coils. In the unloaded scenarios, the Huygens’ cylinder achieves superior B
1+
-field homogeneity over both the sagittal and axial plane compared to the birdcage coil for both 3T and 7T MRI. In the loaded scenarios, the Huygens’ cylinder achieves superior B
1+
-field homogeneity over the sagittal plane and comparable B
1+
-field homogeneity over the axial plane for both 3T and 7T MRI compared to the birdcage coil. Moreover, the 7T Huygens’ cylinder can generate a uniform field over a much larger region, enabling the imaging of a large part of the human body. The Huygens’ cylinder greatly improves the homogeneity of B
1+
field and is free from the dielectric resonance limitation suffered by conventional RF coils. It has strong potential as future RF coils in HF and UHF MR systems.