首页 > 最新文献

IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

英文 中文
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-20 DOI: 10.1109/JERM.2025.3539041
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2025.3539041","DOIUrl":"https://doi.org/10.1109/JERM.2025.3539041","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896912","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-20 DOI: 10.1109/JERM.2025.3539043
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2025.3539043","DOIUrl":"https://doi.org/10.1109/JERM.2025.3539043","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896909","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Vol. 8 电磁学,射频和微波在医学和生物学第8卷
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-12-11 DOI: 10.1109/JERM.2024.3512633
{"title":"2024 Index IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Vol. 8","authors":"","doi":"10.1109/JERM.2024.3512633","DOIUrl":"https://doi.org/10.1109/JERM.2024.3512633","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"401-414"},"PeriodicalIF":3.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10781463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 关于本期刊
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-22 DOI: 10.1109/JERM.2024.3496595
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2024.3496595","DOIUrl":"https://doi.org/10.1109/JERM.2024.3496595","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10765925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 出版信息
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-22 DOI: 10.1109/JERM.2024.3496599
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3496599","DOIUrl":"https://doi.org/10.1109/JERM.2024.3496599","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10765930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Contact Vital Sign Detection With High Noise and Clutter Immunity Based on Coherent Low-IF CW Radar
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-20 DOI: 10.1109/JERM.2024.3454332
Jingtao Liu;Fei Tong;Changzhan Gu
Non-contact vital sign detection using Continuous-Wave (CW) radar is subject to noises and clutters. The heterodyne architecture of the radar transceiver resolves the flicker noise. However, it still suffers from other noise components. Moreover, the presence of clutter also significantly introduces distortions in the sensing results. In this paper, an extended Noise-Immune Motion Sensing (ENIMS) technique is proposed to tackle the noise and clutters simultaneously in the low intermediate-frequency (IF) CW radar. It works by synthesizing I/Q signals at the IF peak of the spectra of the sequentially divided signal segments. Each segment generates one pair of I/Q data points and thus improves the signal-to-noise ratio (SNR). During this process, clutters are also converted into DC components of the I/Q signals. The circle-fitting-based DC compensation technique can thus be used to resolve the clutter issues. High-accurate displacement motion is then reconstructed with the DC-compensated I/Q signals. The theory and noise performance analysis are presented. Simulation and experiments show that, with the proposed technique, the SNR is improved by around 34 dB. Mechanical vibration as small as 90 μm and the subject person's breath and heartbeat at 3.2 m away from the 5. 8 GHz radar were detected under cluttered office environments with a small transmitting power of only 10 μW, whereas the conventional methods fail in the same cases.
{"title":"Non-Contact Vital Sign Detection With High Noise and Clutter Immunity Based on Coherent Low-IF CW Radar","authors":"Jingtao Liu;Fei Tong;Changzhan Gu","doi":"10.1109/JERM.2024.3454332","DOIUrl":"https://doi.org/10.1109/JERM.2024.3454332","url":null,"abstract":"Non-contact vital sign detection using Continuous-Wave (CW) radar is subject to noises and clutters. The heterodyne architecture of the radar transceiver resolves the flicker noise. However, it still suffers from other noise components. Moreover, the presence of clutter also significantly introduces distortions in the sensing results. In this paper, an extended Noise-Immune Motion Sensing (ENIMS) technique is proposed to tackle the noise and clutters simultaneously in the low intermediate-frequency (IF) CW radar. It works by synthesizing <italic>I/Q</i> signals at the IF peak of the spectra of the sequentially divided signal segments. Each segment generates one pair of <italic>I/Q</i> data points and thus improves the signal-to-noise ratio (<italic>SNR</i>). During this process, clutters are also converted into DC components of the <italic>I/Q</i> signals. The circle-fitting-based DC compensation technique can thus be used to resolve the clutter issues. High-accurate displacement motion is then reconstructed with the DC-compensated <italic>I/Q</i> signals. The theory and noise performance analysis are presented. Simulation and experiments show that, with the proposed technique, the <italic>SNR</i> is improved by around 34 dB. Mechanical vibration as small as 90 <italic>μ</i>m and the subject person's breath and heartbeat at 3.2 m away from the 5. 8 GHz radar were detected under cluttered office environments with a small transmitting power of only 10 <italic>μ</i>W, whereas the conventional methods fail in the same cases.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"90-100"},"PeriodicalIF":3.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmable Pulse Generator by Envelope Detection for Implantable Medical Devices
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-30 DOI: 10.1109/JERM.2024.3435075
Hao Zhang;Xiaozhou Zhou;Wenlong Zhou
Pulse generators in implantable medical devices need to be programmable and miniaturized. However, the existing designs of pulse generator cannot satisfy both of the requirements at the same time. This paper presents a novel design of pulse generators applying magnetic resonance, which is composed of a class-C inverter and an envelope detector, for implantable medical devices. Through simulation and tests, we verify the superiority of our design in programmability of the output pulse signal and miniaturization of the implants, compared with the conventional designs. The amplitude, frequency and duty cycle of the output pulse signal of the implanted receiver can be modulated by controlling the input signal of the transmitter outside the human body. And the footprint of the implanted receiver can be miniaturized to 12 mm × 14 mm × 5 mm, which is smaller than half the size of most of the existing products.
{"title":"Programmable Pulse Generator by Envelope Detection for Implantable Medical Devices","authors":"Hao Zhang;Xiaozhou Zhou;Wenlong Zhou","doi":"10.1109/JERM.2024.3435075","DOIUrl":"https://doi.org/10.1109/JERM.2024.3435075","url":null,"abstract":"Pulse generators in implantable medical devices need to be programmable and miniaturized. However, the existing designs of pulse generator cannot satisfy both of the requirements at the same time. This paper presents a novel design of pulse generators applying magnetic resonance, which is composed of a class-C inverter and an envelope detector, for implantable medical devices. Through simulation and tests, we verify the superiority of our design in programmability of the output pulse signal and miniaturization of the implants, compared with the conventional designs. The amplitude, frequency and duty cycle of the output pulse signal of the implanted receiver can be modulated by controlling the input signal of the transmitter outside the human body. And the footprint of the implanted receiver can be miniaturized to 12 mm × 14 mm × 5 mm, which is smaller than half the size of most of the existing products.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"80-89"},"PeriodicalIF":3.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safeguarding Humans From Indoor Wireless Powering via Radar Detection
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-29 DOI: 10.1109/JERM.2024.3447469
Pouya Mehrjouseresht;Oluwatosin J. Babarinde;Vladimir Volski;Alexander Ye. Svezhentsev;Dominique M. M.-P. Schreurs
Ensuring the safety of electromagnetic exposure stands as an important concern in wireless power transfer (WPT) systems. This work proposes a distributed Fusion Radar WPT (FRWPT) system designed to maintain safe Electric Field Amplitude (EFA) levels at specific locations detected by the radar, primarily where an individual is present. This approach allows for higher EFA in areas without the person, thus optimizing overall power utilization within the system. Also, the radar's ability to detect a person's velocity allows for projecting the person's upcoming location to ensure safety in advance. We introduce an algorithm including power weighting factors for controlling power to not only mitigate dangerous radiation but also maximize power utilization. One significant challenge is the estimation of EFA considering multipath propagation, a common issue in indoor environments. To overcome this, we explore the indoor EFA distribution and suggest a simulation-based method for EFA estimation, taking into account the amplifying effect of the human body on EFA. Experimental results demonstrate that the system successfully maintains EFA below a predefined threshold across various human locations. Moreover, these experiments highlight the system's capability to maximize power utilization ratio (PUR), achieving a value exceeding 50%.
{"title":"Safeguarding Humans From Indoor Wireless Powering via Radar Detection","authors":"Pouya Mehrjouseresht;Oluwatosin J. Babarinde;Vladimir Volski;Alexander Ye. Svezhentsev;Dominique M. M.-P. Schreurs","doi":"10.1109/JERM.2024.3447469","DOIUrl":"https://doi.org/10.1109/JERM.2024.3447469","url":null,"abstract":"Ensuring the safety of electromagnetic exposure stands as an important concern in wireless power transfer (WPT) systems. This work proposes a distributed Fusion Radar WPT (FRWPT) system designed to maintain safe Electric Field Amplitude (EFA) levels at specific locations detected by the radar, primarily where an individual is present. This approach allows for higher EFA in areas without the person, thus optimizing overall power utilization within the system. Also, the radar's ability to detect a person's velocity allows for projecting the person's upcoming location to ensure safety in advance. We introduce an algorithm including power weighting factors for controlling power to not only mitigate dangerous radiation but also maximize power utilization. One significant challenge is the estimation of EFA considering multipath propagation, a common issue in indoor environments. To overcome this, we explore the indoor EFA distribution and suggest a simulation-based method for EFA estimation, taking into account the amplifying effect of the human body on EFA. Experimental results demonstrate that the system successfully maintains EFA below a predefined threshold across various human locations. Moreover, these experiments highlight the system's capability to maximize power utilization ratio (PUR), achieving a value exceeding 50%.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"62-69"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propagation of Radio-Frequency Electromagnetic Fields Emitted by Surface-Mounted Parallel-Plate Couplers Along Human Limbs
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-29 DOI: 10.1109/JERM.2024.3442693
Arno Thielens
Wearables on human limbs commonly require wireless connections with other body-worn devices. These links can be established using radio-frequency electromagnetic fields emitted by parallel-plate capacitors (PPCs) as transducing elements. The propagation of the electric (E-) fields emitted by such PPCs on the surface of human limbs is studied by simulations with a stratified, lossy, dielectric cylinder as a limb model. In contrast to currently existing models, this analysis demonstrates that this propagation depends strongly on propagating modes within the lossy dielectric waveguide and that this is associated with an optimal frequency band of operation for such wireless links, which is tied to cut-off frequencies for propagation along the cylindrical waveguide and the radiation efficiency of the PPC, which is also dependent on the limb size. A channel-loss model in the 0.1–1 GHz frequency range is determined based on the simulations. This model is validated using channel loss measurements using a PPC placed on the limbs of three human subjects.
{"title":"Propagation of Radio-Frequency Electromagnetic Fields Emitted by Surface-Mounted Parallel-Plate Couplers Along Human Limbs","authors":"Arno Thielens","doi":"10.1109/JERM.2024.3442693","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442693","url":null,"abstract":"Wearables on human limbs commonly require wireless connections with other body-worn devices. These links can be established using radio-frequency electromagnetic fields emitted by parallel-plate capacitors (PPCs) as transducing elements. The propagation of the electric (E-) fields emitted by such PPCs on the surface of human limbs is studied by simulations with a stratified, lossy, dielectric cylinder as a limb model. In contrast to currently existing models, this analysis demonstrates that this propagation depends strongly on propagating modes within the lossy dielectric waveguide and that this is associated with an optimal frequency band of operation for such wireless links, which is tied to cut-off frequencies for propagation along the cylindrical waveguide and the radiation efficiency of the PPC, which is also dependent on the limb size. A channel-loss model in the 0.1–1 GHz frequency range is determined based on the simulations. This model is validated using channel loss measurements using a PPC placed on the limbs of three human subjects.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"70-79"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mm-MuRe: mmWave-Based Multi-Subject Respiration Monitoring via End-to-End Deep Learning
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-22 DOI: 10.1109/JERM.2024.3443782
Chandler Bauder;Abdel-Kareem Moadi;Vijaysrinivas Rajagopal;Tianhao Wu;Jian Liu;Aly E. Fathy
This study presents mm-MuRe, a novel method to perform multi-subject contactless respiration waveform monitoring by processing raw multiple-input-multiple-output mmWave radar data with an end-to-end deep neural network. The traditional vital signs monitoring signal processing scheme for mmWave radar involves analog or digital beamforming, human subject localization, phase variation extraction, filtering, and rate or biomarker analysis. This traditional method has many downsides, including sensitivity to selected beamforming weights and over-reliance on phase variation. To avoid these drawbacks, mm-MuRe (for MM-wave based MUlti-subject REspiration monitoring) is developed to improve reconstruction accuracy and reliability by taking in unprocessed 60 GHz MIMO FMCW radar data and outputting respiratory waveforms of interest, effectively mimicking an adaptive beamformer and bypassing the need for traditional localization and vital signs extraction techniques. Extensive testing across scenarios differing in range, angle, environment, and subject count demonstrates the network's robust performance, with an average cosine similarity exceeding 0.95. Results are compared to two baseline methods and show more than a 10% average improvement in waveform reconstruction accuracy across single and multi-subject scenarios. Coupled with a rapid inference time of 8.57 ms on a 10 s window of data, mm-MuRe shows promise for potential deployment to efficient and accurate near-real-time contactless respiration monitoring systems.
{"title":"mm-MuRe: mmWave-Based Multi-Subject Respiration Monitoring via End-to-End Deep Learning","authors":"Chandler Bauder;Abdel-Kareem Moadi;Vijaysrinivas Rajagopal;Tianhao Wu;Jian Liu;Aly E. Fathy","doi":"10.1109/JERM.2024.3443782","DOIUrl":"https://doi.org/10.1109/JERM.2024.3443782","url":null,"abstract":"This study presents <sc>mm-MuRe</small>, a novel method to perform multi-subject contactless respiration waveform monitoring by processing raw multiple-input-multiple-output mmWave radar data with an end-to-end deep neural network. The traditional vital signs monitoring signal processing scheme for mmWave radar involves analog or digital beamforming, human subject localization, phase variation extraction, filtering, and rate or biomarker analysis. This traditional method has many downsides, including sensitivity to selected beamforming weights and over-reliance on phase variation. To avoid these drawbacks, <sc>mm-MuRe</small> (for MM-wave based MUlti-subject REspiration monitoring) is developed to improve reconstruction accuracy and reliability by taking in unprocessed 60 GHz MIMO FMCW radar data and outputting respiratory waveforms of interest, effectively mimicking an adaptive beamformer and bypassing the need for traditional localization and vital signs extraction techniques. Extensive testing across scenarios differing in range, angle, environment, and subject count demonstrates the network's robust performance, with an average cosine similarity exceeding 0.95. Results are compared to two baseline methods and show more than a 10% average improvement in waveform reconstruction accuracy across single and multi-subject scenarios. Coupled with a rapid inference time of 8.57 ms on a 10 s window of data, <sc>mm-MuRe</small> shows promise for potential deployment to efficient and accurate near-real-time contactless respiration monitoring systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"49-61"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1