Universal REFoCUS Beamforming With Spatial Weighting

Anders Emil Vrålstad;Magnus Dalen Kvalevåg;Ole Marius Hoel Rindal;Svein-Erik Måsøy
{"title":"Universal REFoCUS Beamforming With Spatial Weighting","authors":"Anders Emil Vrålstad;Magnus Dalen Kvalevåg;Ole Marius Hoel Rindal;Svein-Erik Måsøy","doi":"10.1109/OJUFFC.2024.3398595","DOIUrl":null,"url":null,"abstract":"REFoCUS (Retrospective Encoding For Conventional Ultrasound Sequences) offers great flexibility by enabling synthetic aperture beamforming from conventional ultrasound sequences. This flexibility is beneficial for many aspects in medical ultrasound beamforming, including e.g. combination of different transmit waves, distributed sound speed estimation and common-midpoint gathers. REFoCUS beamforming also has image quality comparable to state-of-art methods such as Retrospective Transmit Beamforming (RTB). However, the previously published implementations of REFoCUS do not address clutter from sidelobes and grating lobes present in the data before the recovery. This reduces image quality due to potentially strong sidelobes and grating lobes, particularly when using REFoCUS in combination with micro-beamforming and matrix array probes. Recordings from micro-beamforming probes may thus not be compliant with the existing REFoCUS methods. We propose to solve the sidelobes and grating lobe issues by introducing a reformulation of REFoCUS that performs multistatic data recovery and beamforming in the time domain, allowing spatial weighting to remove clutter and noise. Spatial weighting is based on common beamforming principles and incorporates element directivity, dynamic F-number, beam geometry weighting, and grating lobe suppression. We also discuss how aperture sampling affects beamforming with REFoCUS. Spatially Weighted REFoCUS (SWR) and critical sampling of the transmit aperture show suppression of receive grating lobes in an in vivo setting with two different micro-beamforming matrix-array probes, leading to an increase in gCNR contrast from 0.44 to 0.96 in a fetal image and from 0.39 to 0.89 in a cardiac image.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"4 ","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10525686","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10525686/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

REFoCUS (Retrospective Encoding For Conventional Ultrasound Sequences) offers great flexibility by enabling synthetic aperture beamforming from conventional ultrasound sequences. This flexibility is beneficial for many aspects in medical ultrasound beamforming, including e.g. combination of different transmit waves, distributed sound speed estimation and common-midpoint gathers. REFoCUS beamforming also has image quality comparable to state-of-art methods such as Retrospective Transmit Beamforming (RTB). However, the previously published implementations of REFoCUS do not address clutter from sidelobes and grating lobes present in the data before the recovery. This reduces image quality due to potentially strong sidelobes and grating lobes, particularly when using REFoCUS in combination with micro-beamforming and matrix array probes. Recordings from micro-beamforming probes may thus not be compliant with the existing REFoCUS methods. We propose to solve the sidelobes and grating lobe issues by introducing a reformulation of REFoCUS that performs multistatic data recovery and beamforming in the time domain, allowing spatial weighting to remove clutter and noise. Spatial weighting is based on common beamforming principles and incorporates element directivity, dynamic F-number, beam geometry weighting, and grating lobe suppression. We also discuss how aperture sampling affects beamforming with REFoCUS. Spatially Weighted REFoCUS (SWR) and critical sampling of the transmit aperture show suppression of receive grating lobes in an in vivo setting with two different micro-beamforming matrix-array probes, leading to an increase in gCNR contrast from 0.44 to 0.96 in a fetal image and from 0.39 to 0.89 in a cardiac image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带空间加权的通用 REFoCUS 波束成形
REFoCUS(传统超声序列回溯编码)具有极大的灵活性,可对传统超声序列进行合成孔径波束成形。这种灵活性有利于医学超声波波束成形的许多方面,例如不同发射波的组合、分布式声速估计和共中点采集。REFoCUS 波束成形的图像质量也可与回溯发射波束成形(RTB)等先进方法相媲美。然而,之前发布的 REFoCUS 实现方法并没有解决恢复前数据中存在的侧叶和光栅裂片带来的杂波问题。这就降低了图像质量,因为可能会产生较强的侧边和光栅裂片,尤其是在将 REFoCUS 与微束成形和矩阵阵列探头结合使用时。因此,微光束成型探头的记录可能不符合现有的 REFoCUS 方法。我们建议引入一种 REFoCUS 重构方法,在时域中执行多静态数据恢复和波束成形,并通过空间加权来消除杂波和噪声,从而解决侧叶和光栅叶问题。空间加权基于常见的波束成形原理,并结合了元件指向性、动态 F 数、波束几何加权和光栅波瓣抑制。我们还将讨论孔径采样如何影响 REFoCUS 的波束成形。空间加权 REFoCUS(SWR)和发射孔径临界采样显示,在活体环境中使用两种不同的微光束成形矩阵阵列探头可抑制接收光栅叶,从而使胎儿图像的 gCNR 对比度从 0.44 提高到 0.96,心脏图像的 gCNR 对比度从 0.39 提高到 0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Demonstration of Pulse-Echo Imaging With a Long Monolithic Flexible CMUT Array The 3D Estimation of Mechanical Wave Velocities in the Heart: Methods and Insights Direct Digital Simultaneous Phase-Amplitude Noise and Allan Deviation Measurement System Rochelle Salt Revisited for Eco-Designed Ultrasonic Transducers 3-D Object Reconstruction From Outdoor Ultrasonic Image and Variation Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1